形态学分水岭算法简介 松果体 松果体-简介,松果体-形态

松果体位于背侧丘脑的内上后方。在儿童7-8岁时最为发育,以后逐渐萎缩退化,腺细胞减少,结缔组织增生。松果体又称脑上腺,呈扁圆锥形,以细柄连于第三脑室顶。松果体表面包以软膜,软膜结缔组织伴随血管伸入腺实质,将实质分为许多小叶,小叶内主要由松果体细胞、神经胶质细胞和无髓神经纤维等组成。

松果体_松果体 -简介


松果体图片松果体位于背侧丘脑的内上后方。在儿童7-8岁时最为发育,以后逐渐萎缩退化,腺细胞减少,结缔组织增生。
松果体又称脑上腺 ,呈扁圆锥形,以细柄连于第三脑室顶。松果体表面包以软膜,软膜结缔组织伴随血管伸入腺实质,将实质分为许多小叶,小叶内主要由松果体细胞、神经胶质细胞和无髓神经纤维等组成。

松果体_松果体 -形态


松果体细胞(pinealocyte)与神经内分泌细胞类似,在HE染色片中,胞体呈圆形或不规则形,核大,胞质少,弱嗜碱性。在银染色切片中,可见细胞具有突起,短而细的突起终止在邻近细胞之间,长而粗的突起多终止在血管周间隙。电镜下,松果体细胞内线粒体和游离核糖体较多,高尔基复合体较发达,可见少量滑面内质网和粗面内质网;胞质内还常见小圆形分泌颗粒,颗粒内含有细胞合成的褪黑激素(melatonin)。此外,胞质尚有一种称为突触带(synaptic ribbon)的结构,它由电子致密的杆状体的周围的许多小泡组成(图11-17)。在低等动物,松果体作为光感受器,松果体细胞的突触带为突触前成分的组成部分;但在哺乳动物,则见突触小带分布于相邻松果体细胞相互接触处,或松果体细胞与细胞外间隙或脑脊液相接触的部位。因此,哺乳动物突触带系突触前成分的提法不能成立。突触带可能与化学介质的运输和释放有关。
神经胶质细胞位于松果体细胞之间,胞体较小,核小着色深。在成人的松果体内常见脑砂(brain sand),它是松果体细胞分泌物经钙化而成的同心圆结构,其意义不明。

松果体_松果体 -作用


松果体细胞分泌褪黑激素。在两栖类,褪黑激素的作用与黑素细胞刺激素相拮抗,可使皮肤褪色。在哺乳动物

松果体,褪黑激素具有抑制生殖腺发育的效应,主要是通过抑制垂体促性腺激素而间接影响生殖腺的活动。近年研究报道,褪黑激素的合成分泌不足,可能会引起睡眠紊乱、情感障碍、肿瘤发生等。经予外源性褪黑激素,可见其具有抗紧张、抗高血压、抗衰老、抗肿瘤、增强免疫力和促进睡眠等效应。白天日照时,松果体几乎停止分泌活动,至夜间才分泌褪黑激素。故生物体能依外界的日照变化,有节奏地控制松果体的功能活动。哺乳动物松果体昼夜节奏性变化是受视交叉背侧的视交叉上核的调节;反之,松果体也影响神交叉上核的昼夜节奏变化。

松果体除接受颈上交感神经节的神经支配外,还可能受其它来源的神经支配。

松果体_松果体 -生物钟调控中心

编辑松果体是人体的“生物钟”的调控中心。由于褪黑激素的分泌受光照和黑暗的调节,因此,昼夜周期中光照与黑暗的周期性交替就会引起褪黑激素的分泌量相应地出现昼夜周期性变化。实验证实,褪黑激素在血浆中的浓度白昼降低,夜晚升高。松果体通过褪黑激素的这种昼夜分泌周期,向中枢神经系统发放“时间信号”,转而引发若干与时间或年龄有关的“生物钟”现象。如人类的睡眠[3]与觉醒、月经周期中的排卵以及青春期的到来。新近发现,人体的智力“生物钟”以33为周期进行运转,情绪“生物钟”为28天,体力“生物钟”为23天。这三大生物钟的调拨也是由松果体来执行的。

松果体_松果体 -分泌褪黑激素

松果体分泌的激素――褪黑激素[4]能够影响和干预人类的许多神经活动,如睡眠与觉醒、情绪、智力等。很显然,松果体在神经信号与激素信号之间扮演着“中介人”的角色。因此,松果体在人体内执行着一个神经――激素转换器的功能。这也是松果体的第三个功能

松果体_松果体 -合成功效

松果体能合成GnRH、TRH及8精-(氨酸)催产素等肽类激素。在多种哺乳动物(鼠、牛、羊、猪等)的松果体内GnRH比同种动物下丘脑所含的GnRH量高4-10倍。有人认为,松果体是GnRH和TRH的补充来源。
然而,我们相信,松果体的功能远不致此,我们对松果体的认识还很肤浅。由于它深埋在颅腔内,使我们对它的研究增添了客观上的困难。但不管怎样,随着研究的深入,它的“庐山真面目”终究会显现在人们面前。
松果体作用现存的一些猜测:

松果体_松果体 -松果体采集

松果体采集可以从阿拉斯家软胶囊里采集
7预感能力编辑现代生物的松果体都有一定程度的退化,其中人类属于退化较多的一类,自然界中的动物能对自然



松果体灾害提前作出反应,而人类通常毫无察觉,因此有人猜测松果体掌管着预感能力,而人类的这一能力退化了;也有人根据松果体能对光波做出反应,推测松果体同样能对某些射线做出特殊反应。此外,古时的神职人员常在头冠上对应松果体的部位镶嵌较大颗粒的宝石,进行占卜等仪式时,会让光线射向印堂或眉心天灵等处,皆指向松果体;眉心一直被当作精神力集中的地方,当人遇厄运时会称“印堂发黑”,不知这些是不是巧合。

松果体_松果体 -生物意义

松果体细胞接受颈上神经节发出的交感神经节后纤维的支配,刺激交感神经,可促进松果体合成和分泌褪黑激素。松果体的分泌机能与光照有密切的关系,持续光照可导致松果体变小,抑制松果体细胞的分泌,而黑暗对松果体的分泌起促进作用。由于褪黑激素的分泌与合成受光照与黑暗的调节,因此,它的分泌量出现昼夜节律变化。在人的血浆中,当中午十二点钟时,其分泌量最低,而在午夜零点时,分泌量最高。另外,它的周期性分泌与动物和人的性周期及月经周期有明显的关系。松果体可能通过褪黑激素的分泌周期向中枢神经系统发放“时间信号”,从而影响机体时间生物效应,如睡眠与觉醒,特别是丘脑-垂体-性腺轴的周期性活动。
光照抑制哺乳动物松果体分泌褪黑激素的途径大致如下:由于松果体受颈交感节后纤维的支配,当光线投射到视网膜并将其部分信息传递到视交叉上核后,视交叉上核又通过某种尚不清楚的神经联系,经内侧前脑束把光照信息传到交感低级中枢,再经脊髓传至颈上神经节,抑制松果体的活动。因此,破坏视交叉上核,切断联系颈上交感神经节的神经,或摘除颈上交感神经节,都会使松果体随明暗变化的节律性活动消失。光照和刺激视神经,或直接刺激视交叉上核,使颈交感神经节的活动受到抑制,则松果体的活动也随之降低。

形态学分水岭算法简介 松果体 松果体-简介,松果体-形态

松果体_松果体 -蜂蜜刺激松果体

松果体是神经内分泌的换能器官,一旦受到蜂蜜的刺激,就能迅速分泌荷尔蒙,调节机能的生理活动。我们知道



松果体,人体的新陈代谢、肝脏、心脏、肾脏、血液和植物神经系统都受荷尔蒙的控制和调节。也就是说,蜂蜜[5]间接地控制了人体的内分泌系统、热能系统、免疫系统,又能抗脂质过氧化、减轻人体的应激反应。这些系统和反应相互配合,彼此呼应,共同维持人体环境的稳定,以达到人类健康长寿的目的,长时间坚持服用蜂蜜刺激身材分泌松果体,就能恢复青年时代的生理功能,包括性功能。人体内的褪黑素是由色氨酸转化而来,蜂蜜刺激人体产生松果体,配合牛奶中含有能够促进褪黑素生成的L-色氨酸,只要经常补充这些食物,即有利于体内细胞分泌褪黑素。通过动物实验和临床验证,专家认为“松果体”是调节人体机能的主宰者。

松果体_松果体 -日本美国研究结果

日本和美国的科学家通过对鸟类松果体的研究证明,鸟类活动的昼夜节律生物钟位于松果体细胞内,他们发现,鸟类的活动量是受到褪黑激素的抑制的。日本科学家在试验时,分别取下在12小时明暗交替的条件喂养的鸡的松果体加以培养,把它分散成一个个细胞,然后在明和暗的环境中观察其中合成褪黑激素所需酶的活性,结果证明,每个松果体及其分散了的细胞都有生物钟作用,它们能记忆明暗的规律,并逐步适应新的规律。美国科学家成功地进行了首例鸟类生物钟的人工移植,他们在试验中发现,如将麻雀的松果体摘除,它们活动的昼夜节律就丧失,变得整天活动不停。如把一只麻雀的松果体移植到另一只切除了松果体的麻雀上时,活动节律就又恢复了并且和给予松果体的麻雀原先的活动节律相一致。
松果体是约7×4mm2大小的扁锥形小体,位于丘脑后上方,以柄附于第三脑室顶的后部。松果体在儿童时期较发达,一般7岁后逐渐萎缩,成年后不断有钙盐沉着。
松果体的主要激素为褪黑素,属于吲哚类化合物,其分泌呈现明显的日周期变化。两栖类动物褪黑素对其有促使皮肤褪色的作用。对哺乳类已经失去这种作用,褪黑素的生理作用可能通过下丘脑、或直接抑制垂体促性腺激素的分泌,抑制性腺活动,抑制性成熟,防止儿童早熟。

松果体_松果体 -事例

在1909年一位德国的医师发现一位4岁的男孩提早经历了不成熟的青春期,然后死亡。验尸结果发现这个男孩死于松果体的恶性肿瘤。因此这位医师便假设正常的松果体能在孩童时期产生抑制性发育的荷尔蒙,假使腺体被肿瘤所破坏,抑制的作用便会停止,使得性发育提早发生。

松果体_松果体 -“天眼通”

松果体,是脑袋里的一个器官,有观点认为佛教中“天眼通”与松果体激活有联系,激活了松果体,相当于打开了第八识,能照见五蕴皆空呀,故知有小孩能用耳朵看书是真实的,每一个都有这个功能,只因为执着、妄想、颠倒不能证得。由于佛教经典产生的历史时期中并没有松果体这个概念,这种观点并不被主流科学界,也没有被佛教界所公认。

  

爱华网本文地址 » http://www.aihuau.com/a/8103320103/58856.html

更多阅读

“启发式搜索算法”简介 启发式搜索算法有哪些

何谓启发式搜索算法  在说它之前先提提状态空间搜索。状态空间搜索,如果按专业点的说法就是将问题求解过程表现为从初始状态到目标状态寻找这个路径的过程。通俗点说,就是在解一个问题时,找到一条解题的过程可以从求解的开始到问题的

RSA算法简介 sha1withrsa算法 简介

1 简介当前最著名、应用最广泛的公钥系统RSA是在1978年,由美国麻省理工学院(MIT)的Rivest、Shamir和Adleman在题为《获得数字签名和公开钥密码系统的方法》的论文中提出的。它是一个基于数论的非对称(公开钥)密码体制,是一种分组密码

分水岭算法 让“服务”成为分水岭

不管你怎么理解,“服务”这个概念你都已经无法回避。但是“服务”是一个宽泛的概念,包括了从饭店和旅馆到医生和律师的万事万物。这里的“服务”到底是指什么呢?“服务”又能给企业带到什么样的新利润区域呢?向“服务”转型的企业是否

秦九韶算法 秦九韶算法-简介,秦九韶算法-数书九章

秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法。秦九韶_秦九韶算法 -简介秦九韶秦九韶(约公元1202年-1261年),字道古,南宋末年人,出生于鲁郡(今山东曲阜一带人)。早年曾从隐君子学数术,后因其父

声明:《形态学分水岭算法简介 松果体 松果体-简介,松果体-形态》为网友持枪走四方分享!如侵犯到您的合法权益请联系我们删除