以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。
复变函数_复变函数 -起源
复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复变函数_复变函数 -发展简况
复变函数论产生于十八世纪。1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”。到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”。复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。
为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。
后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家庞加莱、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。
复变函数论在应用方面,涉及的面很广,有很多复杂的计算都是用它来解决的。比如物理学上有很多不同的稳定平面场,所谓场就是每点对应有物理量的一个区域,对它们的计算就是通过复变函数来解决的。
比如俄国的茹柯夫斯基在设计飞机的时候,就用复变函数论解决了飞机机翼的结构问题,他在运用复变函数论解决流体力学和航空力学方面的问题上也做出了贡献。
复变函数论不但在其他学科得到了广泛的应用,而且在数学领域的许多分支也都应用了它的理论。它已经深入到微分方程、积分方程、概率论和数论等学科,对它们的发展很有影响。
复变函数_复变函数 -内容
复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。
复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在黎曼曲面上就变成单值函数。
黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使我们把比较深奥的函数的解析性质和几何联系起来。现时,关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。
复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、弹性理论、静电场、电路理论等方面都得到了广泛的应用。
留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。
把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。
广义解析函数的应用范围很广泛,不但应用在流体力学的研究方面,而且象薄壳理论这样的固体力学部门也在应用。因此,这些年来这方面的理论发展十分迅速。
从柯西算起,复变函数论已有170多年的历史了。它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中,它的基础内容已成为理工科很多专业的必修课程。复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。
复变函数_复变函数 -定义
复变数复值函数的简称。设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为w=?(z)。这个记号表示,?(z)是z通过规则?而确定的复数。如果记z=x+iy,w=u+iv,那么复变函数w=?(z)可分解为w=u(x,y)+iv(x,y);所以一个复变函数w=?(z)就对应着一对两个实变数的实值函数。除非有特殊的说明,函数一般指单值函数,即对A中的每一z,有且仅有一个w与之对应。例如,z2是复平面上的复变函数。但
在复平面上并非单值,而是多值函数。对这种多值函数要有特殊的处理方法(见解析开拓、黎曼曲面)。
对于z∈A,?(z)的全体所成的数集称为A关于?的像,记为?(A)。函数?规定了A与?(A)之间的一个映射。例如在w=z2的映射下,z平面上的射线argz=θ与w平面上的射线argw=2θ对应;如果?(A)∈A*,称?把A映入A*。如果?(A)=A*,则称?把A映成A*,此时称A为A*的原像。对于把A映成A*的映射?,如果z1与z2相异必导致?(z1)与?(z2)也相异,则称?是一对一的。在一对一的映射下,对A*上的任一w,A上必有一个z与之对应,称此映射为?的反函数,记为
z=?-1(w)。
设?(z)是A上的复变函数,α是A中一点。如果对任一正数ε,都有正数δ,当z∈A且|z-α|<δ时,|?(z)-?(α)|<ε恒成立,则称?(z)在α处是连续的。如果在A上处处连续,则称为A上的连续函数或连续映射。设?是紧集A上的连续函数,则对任一正数ε,必存在不依赖自变数z的正数δ,当z1,z2∈A且|z1-z2<δ时|
..?(z1)-?(z2)|<ε恒成立。这个性质称为?(z)在A上的一致连续性或均匀连续性。
设?(z)是平面开集D内的复变函数。对于z∈D,如果极限存在且有限,则称?(z)在z处是可导的,此极限值称为?(z)在z处的导数,记为?┡(z)。这是实变函数导数概念的推广,但复变函数导数的存在却蕴含着丰富的内容。这是因为z+h是z的二维邻域内的任意一点,极限的存在条件比起一维的实数情形要强得多。一个复变函数如在z的某一邻域内处处有导数,则该函数必在z处有高阶导数,而且可以展成一个收敛的幂级数(见解析函数)。所以复变函数导数的存在,对函数本身的结构有重大影响,而这些结果的研究,构成了一门学科──复变函数论。
复变函数_复变函数 -极限与连续性
设函数w=f(z)在集E上确定,z0为E之聚点,α为一复常数.如果?ε0,?δ>0,当z∈E且0<|z-z0|<δ时,有|f(z)-α|<ε
则称当z趋于z0时,f(z)有极限α.记作limf(z)(z→z0)=α.
复变函数_复变函数 -复变函数的导数
设f(z)是在区域D内确定的单值函数,并且z0∈D,如果lim(f(z)-f(z0))/(z-z0)(z→z0)存在且等于复变函数的有限复数α.则称f(z)在z0点可导或者可微,或称有导数α,记作f’(z0).
复变函数的积分定理:
柯西积分定理。