西绪福斯 数字黑洞 数字黑洞-西绪福斯黑洞,数字黑洞-重排求差黑洞

黑洞原是天文学中的概念,表示这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。数学中借用这个词,指的是某种运算,这种运算一般限定从某些整数出发,反复迭代后结果必然落入一个点或若干点。数字黑洞运算简单,结论明了,易于理解,故人们乐于研究。但有些证明却不那么容易。 黑洞数又称陷阱数,是类具有奇特转换特性的整数。任何一个数字不全相同整数,经有限“重排求差”操作,总会得某一个或一些数,这些数即为黑洞数。“重排求差”操作即把组成该数的数字重排后得到的最大数减去重排后得到的最小数。

数字黑洞_数字黑洞 -西绪福斯黑洞

西绪福斯 数字黑洞 数字黑洞-西绪福斯黑洞,数字黑洞-重排求差黑洞
数学中的123就跟英语中的ABC一样平凡和简单。然而,按以下运算顺序,
数字黑洞123就可以观察到这个最简单的黑洞值:设定一个任意数字串,数出这个数中的偶数个数,奇数个数,及这个数中所包含的所有位数的总数,
例如:1234567890,
偶:数出该数数字中的偶数个数,在本例中为2,4,6,8,0,总共有 5 个。
奇:数出该数数字中的奇数个数,在本例中为1,3,5,7,9,总共有 5 个。
总:数出该数数字的总个数,本例中为 10 个。
新数:将答案按 “偶-奇-总” 的位序,排出得到新数为:5510。
重复:将新数5510按以上算法重复运算,可得到新数:134。
重复:将新数134按以上算法重复运算,可得到新数:123。
结论:对数1234567890,按上述算法,最后必得出123的结果,我们可以用计算机写出程序,测试出对任意一个数经有限次重复后都会是123。换言之,任何数的最终结果都无法逃逸123黑洞。

数字黑洞_数字黑洞 -重排求差黑洞

重排求差黑洞又叫卡普雷卡尔黑洞

三位数黑洞495

只要你输入一个三位数,要求个,十,百位数字不相同,如不允许输入111,222等。那么你把这个三位数的三个数字按大小重新排列,得出最大数和最小数,两者相减得到一个新数,再按照上述方式重新排列,再相减,最后总会得到495这个数字,人称:卡普雷卡尔黑洞。

举例:输入352,排列得最大数位532,最小数为235,相减得297;再排列得972和279,相减得693;接着排列得963和369,相减得594;最后排列得到954和459,相减得495。

四位数黑洞6174

把一个四位数的四个数字由小至大排列,组成一个新数,又由大至小排列排列组成一个新数,这两个数相减,之后重复这个步骤,只要四位数的四个数字不重复,数字最终便会变成 6174。

例如 3109,9310 - 0139 = 9171,9711 - 1179 = 8532,8532 - 2358 = 6174。而 6174 这个数也会变成 6174,7641 - 1467 = 6174。
任取一个四位数,只要四个数字不全相同,按数字递减顺序排列,构成最大数作为被减数;按数字递增顺序排列,构成最小数作为减数,其差就会得6174;如不是6174,则按上述方法再作减法,至多不过10步就必然得到6174。
如取四位数5679,按以上方法作运算如下:
9765-5679=4086 8640-4068=4572 7542-2457=5085
8550-5058=3492 9432-2349=7083 8730-3078=5652
6552-2556=3996 9963-3699=6264 6642-2466=4176
7641-1467=6174
那么,出现6174的结果究竟有什么科学依据呢?
设M是一个四位数而且四个数字不全相同,把M的数字按递减的次序排列,
记作M(减);
然后再把M中的数字按递增次序排列,记作M增,记差M(减)-M(增)=D1,从M到D1是经过上述步骤得来的,我们把它看作一种变换,从M变换到D1记作:T(M)= D1把D1视作M一样,按上述法则做减法得到D2 ,也可看作是一种变换,把D1变换成D2,
记作:T(D1)= D2
同样D2可以变换为D3;D3变换为D4……,既T(D2)= D3,T(D3)= D4……
现在我们要证明,至多是重复7次变换就得D7=6174。

证明

证:四位数总共有9999-999=9000个,其中除去四个数字全相同的,余下9000-10=8990个数字不全相同.我们首先证明,变换T把这8990个数只变换成54个不同的四位数.

设a、b、c、d是M的数字,并:
a≥b≥c≥d
因为它们不全相等,上式中的等号不能同时成立.我们计算T(M)
M(减)=1000a+100b+10c+d
M(增)=1000d+100c+10b+a
T(M)= D1= M(减)-M(增)=1000(a-d)+100(b-c)+10(c-b)+d-a=999(a-d)+90(b-c)
我们注意到T(M)仅依赖于(a-d)与(b-c),因为数字a,b,c,d不全相等,因此由a≥b≥c≥d可推出;a-d>0而b-c≥0.
此外b、c在a与d之间,所以a-d≥b-c,这就意味着a-d可以取1,2,…,9九个值,并且如果它取这个集合的某个值n,b-c只能取小于n的值,至多取n.
例如,若a-d=1,则b-c只能在0与1中选到,在这种情况下,T(M)只能取值:
999×⑴+90×(0)=0999
999×⑴+90×⑴=1089
类似地,若a-d=2,T(M)只能取对应于b-c=0,1,2的三个值.把a-d=1,a-d=2,…,a-d=9的情况下b-c所可能取值的个数加起来,我们就得到2+3+4+…+10=54
这就是T(M)所可能取的值的个数.在54个可能值中,又有一部分是数码相同仅仅是数位不同的值,这些数值再变换T(M)中都对应相同的值(数学上称这两个数等价),剔除等价的因数,在T(M)的54个可能值中,只有30个是不等价的,它们是:
9990,9981,9972,9963,9954,9810,9711,9621,9531,9441,8820,8730,8721,8640,8622,8550,
8532,8442,7731,7641,7632,7551,7533,7443,6642,6552,6543,5553,5544。
对于这30个数逐个地用上述法则把它换成最大与最小数的差,至多6步就出现6174这个数。

数字黑洞_数字黑洞 -水仙花数黑洞

数字黑洞153
任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方、求和,......,重复运算下去,就能得到一个固定的数――153,我们称它为数字“黑洞”。
例如:
1、63是3的倍数,按上面的规律运算如下:
6^3+3^3=216+27=243,
2^3+4^3+3^3=8+64+27=99,
9^3+9^3=729+729=1458,
1^3+4^3+5^3+8^3=1+64+125+512=702
7^3+0^3+2^3=351,
3^3+5^3+1^3=153,
1^3+5^3+3^3=153,
2、3*3*3=27,
2*2*2+7*7*7=351,
3*3*3+5*5*5+1*1*1=153
...
现在继续运算下去,结果都为153,如果换另一个3的倍数,试一试,仍然可以得到同样的结论,因此153被称为一个数字“黑洞”。
除了0和1自然数中各位数字的立方之和与其本身相等的只有153、370、371和407(此四个数称为“水仙花数”)。例如为使153成为黑洞,我们开始时取任意一个可被3整除的正整数。分别将其各位数字的立方求出,将这些立方相加组成一个新数然后重复这个程序。
除了“水仙花数”外,同理还有四位的“玫瑰花数”(有:1634、8208、9474)、五位的“五角星数”(有54748、92727、93084),当数字个数大于五位时,这类数字就叫做“自幂数”。数字黑洞是指自然经过某种数学运算之后陷入了一种循环境况。例如,任意选四个不同的数字,组成一个最大的数和一个最小的数,用大的数减去小的数。用所得结果的四位数重复上述过程,最多七步,必得6174。即:7641-1467=6174。仿佛掉进了黑洞,永远出不来。这个在中学考试中会出现。

  

爱华网本文地址 » http://www.aihuau.com/a/8103420103/91580.html

更多阅读

穆里尼奥与卡西利亚斯的矛盾来由 dnf卡西利亚斯

穆里尼奥与卡西利亚斯的矛盾来由文/凌云子皇马主帅穆里尼奥被正式解雇,其中非常重要的一个原因是主帅穆里尼奥与队长卡西利亚斯发生了不可调和的矛盾,导致皇马陷入长久内讧和球队接连失利,在2012/13赛季成为“三大皆空”、颗粒无收

朱迪·福斯特:鼠笼里的女演员

↑70届金球奖颁奖现场的朱迪:向下一个五十年致敬1974年,《洛杉矶时报》问12岁的朱迪·福斯特有什么愿望。像大多数那个年纪的孩子,她以为这些愿望日后一定会实现,所以特别认真。除了想当美国总统,这个喜欢玩滑板的假小子天真地回答:“我

声明:《西绪福斯 数字黑洞 数字黑洞-西绪福斯黑洞,数字黑洞-重排求差黑洞》为网友夕陽西下分享!如侵犯到您的合法权益请联系我们删除