立方差公式 立方和公式 立方和公式-字母表达,立方和公式-文字表达

本文主要介绍了立方和公式的字母表达,语言表达,公式延伸,公式证明,几何验证等立方和,差公式:两数和(差),乘它们的平方和与它们的积的差(和),等于这两个数的立方和(差)项立方和公式:三数之和,乘它们的平方和与它们两两的积的差,等于这三个数的立方和减三数之积的三倍。

立方公式_立方和公式 -字母表达

立方和公式:

a³+b³ = (a+b) (a²-ab+b²)
a³-b³ = (a-b) (a²+ab+b²)

立方差公式:

a³-b³=(a-b) (a²+ab+b²)

3项立方和公式:

a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)
推导过程:
a³+b³+c³-3abc
=(a³+3a² b+3ab²+b³+c³)-(3abc+3a² b+3ab²)
=[(a+b)³+c³]-3ab(a+b+c)
=(a+b+c)(a²+b²+2ab-ac-bc+c²)-3ab(a+b+c)
=(ab+c)(a²+b²+c²+2ab-3ab-ac-bc)
=(a+b+c)(a²+b²+c²-ab-bc-ac)

立方差公式 立方和公式 立方和公式-字母表达,立方和公式-文字表达

立方公式_立方和公式 -文字表达

立方和,差公式:

两数和(差),乘它们的平方和与它们的积的差(和),等于这两个数的立方和(差)

3项立方和公式:

三数之和,乘它们的平方和与它们两两的积的差,等于这三个数的立方和减三数之积的三倍

立方公式_立方和公式 -公式延伸

正整数范围中 1^3 + 2^3 + …… n^3 = [n (n+1) / 2]^2=(1+2+……+n)^2

立方公式_立方和公式 -公式证明

1迭代法:
我们知道:
0次方和的求和公式ΣN^0=N 即1^0+2^0+...+n^0=n
1次方和的求和公式ΣN^1=N(N+1)/2 即1^1+2^1+...+n^1=n(n+1)/2
2次方和的求和公式ΣN^2=N(N+1)(2N+1)/6 即1^2+2^2+...+n^2=n(n+1)(2n+1)/6――平方和公式,此公式可由同种方法得出,取公式(x+1)^3-x^3=3x^2+3x+1,迭代即得。
取公式:(X+1)^4-X^4=4*X^3+6*X^2+4*X+1
系数可由杨辉三角形来确定
那么就得出:
(N+1)^4-N^4=4N^3+6N^2+4N+1....................................(1)
N^4-(N-1)^4=4(N-1)^3+6(N-1)^2+4(N-1)+1.......................(2)
(N-1)^4-(N-2)^4=4(N-2)^3+6(N-2)^2+4(N-2)+1..................(3)
...................
2^4-1^4=4×1^3+6×1^2+4×1+1...................................(n)
.
于是(1)+(2)+(3)+........+(n)有
左边=(N+1)^4-1
右边=4(1^3+2^3+3^3+......+N^3)+6(1^2+2^2+3^2+......+N^2)+4(1+2+3+......+N)+N
所以呢
把以上这已经证得的三个公式代入
4(1^3+2^3+3^3+......+N^3)+6(1^2+2^2+3^2+......+N^2)+4(1+2+3+......+N)+N=(N+1)^4-1
得4(1^3+2^3+3^3+......+N^3)+N(N+1)(2N+1)+2N(N+1)+N=N^4+4N^3+6N^2+4N
移项后得 1^3+2^3+3^3+......+N^3=1/4 (N^4+4N^3+6N^2+4N-N-2N^2-2N-2N^3-3N^2-N)
等号右侧合并同类项后得 1^3+2^3+3^3+......+N^3=1/4 (N^4+2N^3+N^2)

1^3+2^3+3^3+......+N^3= 1/4 [N(N+1)]^2
大功告成!
立方和公式推导完毕
1^3+2^3+3^3+......+N^3= 1/4 [N(N+1)]^2
2. 因式分解思想证明如下:a^3+b^3=a^3+a^2*b+b^3-a^2*b
=a^2(a+b)-b(a^2-b^2)=a^2(a+b)-b(a+b)(a-b)
=(a+b)[a^2-b(a-b)]=(a+b)(a^2-ab+b^2)

关于因数的立方和

一般而言,任取一自然数N,他的因数有1,n1,n2,n3,……,nk,N,这些因数的因数个数分别为1,m1,m2,m3,……,mk,k+2,则
1^3+m1^3+m2^3+m3^3+……+mk^3+(k+2)^3
=(1+m1+m2+m3+……+mk+k+2)^2
我们发现,上述规律对素数p是永远成立的,因为素数p的因数只有1和p,因数的个数只有1和2,所以成立。
合数的验证方法可以从因数个数出发证明,有中学水平的人可以自己证明。
比如120,有因数
1,2,3,4,5,6,8,10,12,15,20,24,30,40,60,120;它们的因数个数为
1,2,2,3,2,4,4,4,6,4,6,8,8,8,12,16,
1^3+2^3+2^3+3^3+2^3+4^3+4^3+4^3+6^3+4^3+6^3+8^3+8^3+8^3+12^3+16^3=8100
(1+2+2+3+2+4+4+4+6+4+6+8+8+8+12+16)^2=8100

立方公式_立方和公式 -几何验证


图象化立方和公式透过绘立体的图像,也可验证立方和。根据右图,设两个立方,总和为:
x^3+y^3
把两个立方体对角贴在一起,根据虚线,可间接得到:
(x+y)^3
要得到x^3+y^3,可使用(x+y)^3的空白位置。该空白位置可分割为3个部分:
・x×y×(x+y)
・x×(x+y)×y
・(x+y)×x×y
把三个部分加在一起,便得:
=xy(x+y)+xy(x+y)+xy(x+y)
=3xy(x+y)
之后,把(x+y)^3减去它,便得:=(x+y)^3-3xy(x+y)公式发现两个数项皆有一个公因子,把它抽出,并得:
=(x+y)[(x+y)^2-3xy]
(x+y)^2可透过和平方公式,得到:
=(x+y)(x^2+ 2xy+y^2-3xy)
=(x+y)(x^2−xy+y^2)
这样便可证明:x^3+y^3=(x+y)(x^2 −xy+y^2)

  

爱华网本文地址 » http://www.aihuau.com/a/8103420103/93047.html

更多阅读

方差公式及计算器如何算方差 方差计算器

若x1,x2,x3......xn的平均数为m则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度。MODE 2进入SD模式。统计前要先清除上次统计纪录:SHIFTAC=。然后输入

三角函数积化和差公式的证明 三角积化和差

首先,sin(α+β)=sinαcosβ+sinβcosα(已证。证明过程见《和角公式与差角公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和角公式)则sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα于

为什么我和父母的关系这么差? 我和父母一起学安全

我和父母的关系一直很差,当然是我的眼里,在他们眼里我不知道是什么,可能是我比较任性,或者只是脾气不好吧。我很多时间恨我的父母,讨厌他们,我理解所以80后的孩子们“父母是祸害”的言论,我也是个不折不扣的80后。有的时候我努力的说服自

什么叫委比委差 现量和量比是什么意思

解释1:委比是衡量一段时间内场内买、卖盘强弱的技术指标。它的计算公式为:委比=(委买手数-委卖手数)/(委买手数+委卖手数)×100%。从公式中可以看出,“委比”的取值范围从-100%至+100%。若“委比”为正值,说明场内买盘较强,且数值越大,买盘就越强劲。

声明:《立方差公式 立方和公式 立方和公式-字母表达,立方和公式-文字表达》为网友清白路人分享!如侵犯到您的合法权益请联系我们删除