叙述并证明正弦定理 叙述并证明余弦定理

《叙述并证明余弦定理》证明书

叙述并证明余弦定理余弦定理(第二余弦定理)余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值

编辑本段余弦定理性质

对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质――

a^2 = b^2+ c^2 - 2・b・c・cosA

b^2 = a^2 + c^2 - 2・a・c・cosB(散文阅读:www.www.AihuAu.com.net )

c^2 = a^2 + b^2 - 2・a・b・cosC

cosC = (a^2 + b^2 - c^2) / (2・a・b)

cosB = (a^2 + c^2 -b^2) / (2・a・c)

cosA = (c^2 + b^2 - a^2) / (2・b・c)

(物理力学方面的平行四边形定则中也会用到)

第一余弦定理(任意三角形射影定理)

设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有

a=b・cos C+c・cos B, b=c・cos A+a・cos C, c=a・cos B+b・cos A。

编辑本段余弦定理证明

平面向量证法

∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小) ∴c・c=(a+b)・(a+b)

∴c^2=a・a+2a・b+b・b∴c^2=a^2+b^2+2|a||b|Cos(π-θ)

(以上粗体字符表示向量)

又∵Cos(π-θ)=-Cosθ

叙述并证明正弦定理 叙述并证明余弦定理

∴c2=a2+b2-2|a||b|Cosθ(注意:这里用到了三角函数公式)

再拆开,得c2=a2+b2-2*a*b*CosC

即 CosC=(a2+b2-c2)/2*a*b

同理可证其他,而下面的CosC=(c2-b2-a2)/2ab就是将CosC移到左边表示一下。

平面几何证法

在任意△ABC中

做AD⊥BC.

∠C所对的边为c,∠B所对的边为b,∠A所对的边为a

则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c

根据勾股定理可得:

AC2=AD2+DC2

b2=(sinB*c)2+(a-cosB*c)2

b2=(sinB*c)2+a2-2ac*cosB+(cosB)2*c2

b2=(sinB2+cosB2)*c2-2ac*cosB+a2

b2=c2+a2-2ac*cosB

cosB=(c2+a2-b2)/2ac

编辑本段作用

(1)已知三角形的三条边长,可求出三个内角

(2)已知三角形的两边及夹角,可求出第三边。

(3)已知三角形两边及其一边对角,可求其它的角和第三条边。(见解三角形公式,推导过程略。)

判定定理一(两根判别法):

若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取

减号的值

①若m(c1,c2)=2,则有两解

②若m(c1,c2)=1,则有一解

③若m(c1,c2)=0,则有零解(即无解)。

注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。

判定定理二(角边判别法):

一当a>bsinA时

①当b>a且cosA>0(即A为锐角)时,则有两解

②当b>a且cosA<=0(即A为直角或钝角)时,则有零解(即无解)

③当b=a且cosA>0(即A为锐角)时,则有一解

④当b=a且cosA<=0(即A为直角或钝角)时,则有零解(即无解)

⑤当b 二当a=bsinA时

①当cosA>0(即A为锐角)时,则有一解

②当cosA<=0(即A为直角或钝角)时,则有零解(即无解)

三当a 例如:已知△ABC的三边之比为5:4:3,求最大的内角。

解 设三角形的三边为a,b,c且a:b:c=5:4:3.

由三角形中大边对大角可知:∠A为最大的角。由余弦定理

cos A=0

所以∠A=90°.

再如△ABC中,AB=2,AC=3,∠A=60度,求BC之长。

解 由余弦定理可知

BC2=AB2+AC2-2AB×AC・cos A

=4+9-2×2×3×cos60

=13-12x0.5

=13-6

=7

所以BC=√7. (注:cos60=0.5,可以用计算器算)

以上两个小例子简单说明了余弦定理的作用。

编辑本段其他

从余弦定理和余弦函数的性质可以看出,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角一定是直角,如果小于第三边的平方,那么第三边所对的角是钝角,如果大于第三边的平方,那么第三边所对的角是锐角。即,利用余弦定理,可以判断三角形形状。同时,还可以用余弦定理求三角形边长取值范围。

解三角形时,除了用到余弦定理外还常用正弦定理。

  

爱华网本文地址 » http://www.aihuau.com/a/8103430103/96539.html

更多阅读

正弦定理的教学反思 垂径定理教学反思

在备课中有两个问题需要精心设计.一个是问题的引入,一个是定理的证明.课本通过一个实际问题引入,但没有深入展开下去;对正弦定理的证明是利用三角形的面积公式导出的,但不够自然.为了处理好这两个问题,我首先确定了一个基本原则,就是充分

人教A版必修五正弦定理说课稿 人教版勾股定理说课稿

人教A版数学必修五《正弦定理》说课稿卢龙县木井中学 贺永辉尊敬的各位专家、评委:大家好!我是卢龙县木井中学数学教师贺永辉,我今天说课的题目是:人教A版普通高中课程标准实验教科书数学必修5第一章第一节的第一课时《正弦定理》,依

矩形的判定(教学设计) 矩形的判定说课稿

矩形的判定【教学目标】1、知识与技能理解并掌握矩形的判定方法。使学生能运用矩形的定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力。2、过程与方法通过证明性质定理的逆命题为真命题来证明判定定理。3

《心正笔正的柳公权》教学反思 正弦定理教学反思

《心正笔正的柳公权》教学反思有效的语文教学,就是通过有效的教学手段使学生在知识和技能、过程和方法、情感态度价值观等方面获得进步与发展,使之语文素养得到提升,并亲历学习过程和掌握学习方法。如何提高语文教学的有效性是我们语

余弦定理说课稿 正比例函数的应用

《余弦定理》说课稿各位老师大家好!今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。下面我分别从教材分析、教学目标的确定、教学方法的选择和教学过程的设计这四个方面来阐述

声明:《叙述并证明正弦定理 叙述并证明余弦定理》为网友挽歌渡临舟分享!如侵犯到您的合法权益请联系我们删除