既有方向又有大小的量叫做向量(物理学中叫做矢量),只有大小没有方向的量叫做数量(物理学中叫做标量)。向量的几何表示法既直观又简单。但作为一种数学量,向量要参加运算,这种表示法有时就极不方便。向量也可分解为分向量,即如果α=bc,则称α被分解为两分向量b,c。向量的大小,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量。一个向量空间V的一个非空子集合W在加法及标量乘法中表现密闭性,被称为V的线性子空间。给两个向量空间V和W在同一个F场,设定由V到W的线性变换或“线性映射” . 这些由V到W的映射都有共同点就是它们保持总和及标量商数。
向量
向量是一种既有大小又有方向的量。又称为矢量。 向量在线性代数中是指n个实数组成的有序数组,称为n维。一般用α,β,γ等希腊字母表示。有时也用a,b,c等拉丁字母表示:α=(a1,a2。。。an)称为n维向量。其中ai称为向量α的第i个分量。(“a1”的“1”为a的下标,“ai”的“i”为a的下标,其他类推)
向量_向量 -简介
向量图片表示在数学中,通常用点表示位置,用射线表示方向。在平面内,从任一点出发的所有射线,可以分别用来表示平面内的各个方向。向量的表示向量的表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。向量也可用字母a、b、c等表示,或用表示向量的有向线段的起点和终点字母表示。向量的大小,也就是向量的长度(或称模),记作|a|长度为0的向量叫做零向量,记作0.长度等于1个单位长度的向量,叫做单位向量。
平行向量与相等向量
方向相同或相反的非零向量叫做平行向量。向量a、b、c平行,记作a∥b∥c。0向量长度为零,是起点与终点重合的向量,其方向不确定,数学上规定0与任一向量平行。
长度相等且方向相同的向量叫做相等向量。向量a与b相等,记作a=b。零向量与零向量相等。任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关。
向量空间的同构
在域F上的两个向量空间V与V' ,如果存在一个双射φ:V→V'并且φ(aμ bν)=aφ(μ) bφ(ν),a,b∈F,μ,ν∈V.这样V与V' 便是同构。
向量线性映射
给两个向量空间V和W在同一个F场,设定由V到W的线性变换或“线性映射” . 这些由V到W的映射都有共同点就是它们保持总和及标量商数。这个集合包含所有由V到W的线性映像,以 L(V,W) 来描述,也是一个F场里的向量空间。当V及W被确定后,线性映射可以用矩阵来表达。同构是一对一的一张线性映射.如果在V 和W之间存在同构, 我们称这两个空间为同构;他们根本上是然后相同的。一个在F场的向量空间加上线性映像就可以构成一个范畴,即阿贝尔范畴。
概念化及额外结构
研究向量空间一般会涉及一些额外结构。额外结构如下:
一个实数或复数向量空间加上长度概念。就是范数称为赋范向量空间。
一个实数或复数向量空间加上长度和角度的概念,称为内积空间。
一个向量空间加上拓扑学符合运算的(加法及标量乘法是连续映射)称为拓扑向量空间。
一个向量空间加上双线性算子(定义为向量乘法)是个域代数。
子空间及基
一个向量空间V的一个非空子集合W在加法及标量乘法中表现密闭性,被称为V的线性子空间。给出一个向量集合B,那么包含它的最小子空间就称为它的扩张,记作span(B)。给出一个向量集合B,若它的扩张就是向量空间V, 则称B为V的生成集。一个向量空间V最大的线性独立子集,称为这个空间的基。若V=0,唯一的基是空集。对非零向量空间 V,基是 V 最小的生成集。如果一个向量空间 V 拥有一个元素个数有限的生成集,那么就称V是一个有限维空间。向量空间的所有基拥有相同基数,称为该空间的维度。例如,实数向量空间:R0,R1,R2,R3。。。,R∞,。。。中,Rn 的维度就是n。空间内的每个向量都有唯一的方法表达成基中元素的线性组合。把基中元素排列,向量便可以座标系统来呈现。
向量_向量 -表示法
图1,向量的几何表示向量的表示法:通常可以用几何的或代数、坐标的方法来表示向量。
向量的几何表示法:从空间中任意一点A出发引一半射线l,并在其上另取一点B,则有向线段AB就代表一向量(图1),简记为
,或用α表示;这向量的大小就是线段AB的长,其方向就是半射线l的方向。向量α的大小称为它的模或绝对值,记为
。
一般说来,如果向量
的起点A换作另一点A┡,终点也换作另一点B┡,使AB∥A┡B┡,且它们的指向也相同,又长度
则认为向量
与向量
是相等或相同的向量:
,仍可记为α。这样理解的向量有时也称为自由向量(起点可自由改变)。当然根据实际情况,有时向量的起点不能随便改变(例如,如果向量α代表一个力,其起点A代表力的作用点,这时起点就不能随意改变),这种向量有时称为固端向量。这里一般只考虑自由向量。 一种特殊情况须加注意,就是B=A的情况,这时向量
称为零向量,记为0。零向量的模为0,而且无确定方向。 按照自由向量的观点,规定两向量α,b相等的充分必要条件是:|α|=|b|,且(如果它们不是零向量)α,b的方向(包括指向)相同。 如果向量α,b(都≠0)所在直线平行或重合,则称α与b平行,记作α∥b。向量-α指的是其模与α的模相等、且与α平行但指向相反的向量。如果向量α,b所在直线互相垂直,则称α与b互相垂直或正交,记作α⊥b。 此外还规定,任何向量α都与零向量0既平行又垂直。 根据定义,任何向量α与它自身平行。 如果向量α的模等于1(|α|=1),则称α为一单位向量。
图2,向量的坐标表示向量的代数表示法:向量的几何表示法既直观又简单。但作为一种数学量,向量要参加运算,这种表示法有时就极不方便。下面向量的代数表示法就可克服这一困难。 在空间取定一右手坐标系(当然也可取左手坐标系,但为确定起见,不取左手系),如图2。已给一向量α。把它的起点取在坐标原点O处,其终点为
。把有向线段Op投影到三坐标轴x,y,z上,分别得投影Op1,Op2,Op3,它们的有向长x,y,z分别称为α在x轴、y轴、z轴上的三个分量,而把α表示为 :
(1)
这便是向量α的代数表示法。(x,y,z)实际上就是p点在Oxyz坐标系中的坐标。反过来,给定空间一点p(x,y,z),由(1)式就可定义一向量α,使其三个分量依次为x,y,z。 零向量0的三个分量都是0:0={0,0,0}。
由定义还可知,如果向量α以(1)式给出,则
如果向量α的起点取在Q1{x1,y1,z1}点,而终点为Q2{x2,y2,z2},则其代数表示为
(2)
当坐标系作平移时,向量的代数表示不变。当坐标系在讨论过程中始终固定不变时,则也可把(1)式,即三个有顺序的数x,y,z作为向量的定义。
向量坐标表示法:平面向量的坐标表示:在直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量 作为基底。由平面向量的基本定理知,该平面内的任一向量可表示成 ,由于与数对(x,y)是一一对应的,因此把(x,y)叫做向量的坐标,记作=(x,y),其中x叫作在x轴上的坐标,y叫做在y轴上的坐标。
向量_向量 -来源
向量的表示向量又称为矢量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国科学家牛顿。 调查表明,一般日常生活中使用的的向量是一种带几何性质的量,除零向量外,总可以画出箭头表示方向.但是在高等数学中还有更广泛的向量。例如,把所有实系数多项式的全体看成一个多项式空间,这里的多项式都可看成一个向量。在这种情况下,要找出起点和终点甚至画出箭头表示方向是办不到的。这种空间中的向量比几何中的向量要广泛得多,可以是任意数学对象或物理对象.这样,就可以指导线性代数方法应用到广阔的自然科学领域中去了。因此,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用。而向量及其线性运算也为“向量空间”这一抽象的概念提供出了一个具体的模型.
从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到19世纪末20世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系。 向量能够进入数学并得到发展的阶段是18世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数a+bi,并利用具有几何意义的复数运算来定义向量的运算.把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学.
但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系。19世纪中期,英国数学家汉密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量。他的工作为向量代数和向量分析的建立奠定了基础。随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析。
三维向量分析的开创,以及同四元数的正式分裂,是英国的居伯斯和海维塞德于19世纪80年代各自独立完成的。他们提出,一个向量不过是四元数的向量部分,但不独立于任何四元数。他们引进了两种类型的乘法,即数量积和向量积。并把向量代数推广到变向量的向量微积分。从此,向量的方法被引进到分析和解析几何中来,并逐步完善,成为了一套优良的数学工具。
向量_向量 -代数运算
向量作为一种数学量可以进行某些代数运算,如加法、减法、乘法等。这些运算方法都有实际背景,因此在实际上是有意义的,被认为应用时是有效的。图3向量的数乘向量的数乘:向量α与一(实)数с的乘法规定如下:定义сα为一向量,其模
且与α平行;当с>0时,其指向与α的相同;当с<0时,它就与α的相反(图3)。当然с=0时,0α=0。特别,易见
如果用代数表示法,则若α={x,y,z},便有
向量的数乘是符合结合律的,即若α为一向量,b,с为任二数,则
图4向量的加法向量的加法:已给二向量α,b,来定义αb。用几何表示法,将
取在同一起点O(图4),然后以OA,OB为邻边作一平行四边形,得另一顶点C(图4),则向量c=OC就定义为αb。所以向量的加法规则也称作平行四边形规则。又因
所以αb也可这样来理解:先作出
然后以A为起点,作
则三角形OAC的第三条边OC就形成一向量
因此,向量的加法规则有时也称为三角形规则。
如果用代数表示法,设
则有
由向量加法定义,有以下规律:
图5向量的减法向量的减法:与通常算术中一样,把向量的减法作为加法的逆运算来定义。即已给二向量α,b,定义α-b=c为一向量,使得bc=α。
在几何上,如果
,则
(图5)。在代数上,如
则
由此立刻知道,α-b是惟一的。而且容易看出,
总之,对于向量的加减法和数乘来说,可以如同数字的算术运算那样进行。
向量与向量的乘法情况相对来说稍为复杂一点。
向量的内积:设有二向量αb。先假定它们都不是零向量。记它们之间(即它们所在直线之间)的夹角为θ,则定义
为α,b的内积,或称为点积,也简记为αb。它不再是向量,而是一个数,所以也称为数积。如果α,b中只要有一个是零向量,则定义α*b=0。
如果用代数方法,设
则
由定义还可看出α*α,也记为α=|α|=α(α仍表示α的模)。
向量的内积遵从以下一些运算规则:
此外,还可看出,两向量α,b互相垂直(正交)的充分必要条件为α*b=0(不论α,b是不是零向量)。
图6向量的外积向量的外积:这是向量的另一种乘法。仍设α,b为二向量。也暂先假定它们都不是零向量,且不平行。定义α×b=c为一向量,其模为: |c|=|α×b|=|α||b||sinθ|,(3)式中θ仍为α,b的夹角,其方向要求与α,b都垂直,而其指向如下法规定:使α,b,c的指向依次恰如Oxyz坐标系中x轴,y轴,z轴的正向那样构成一右手系(图6)。|α×b|在几何上正好是以α,b为两邻边构成的平行四边形的面积。如果α∥b,则因θ=0或π,故定义α×b=0;因此,如果α,b中至少有一个是零向量,则也有α×b=0。α×b称为α,b的外积或叉积。因为它仍是个向量,所以也称为向量积。
用代数表示法时,设
则
α×b={α2b3-α3b2,α3b1-α1b3,α1b2-α2b1}。
注意,向量外积不服从交换律,而服从反交换律:
它也不服从结合律,即一般
但若注意了次序不能改变,则这一乘法却服从分配律:
两向量α,b平行的充分必要条件是α×b=0。值得注意,对于任意向量α,恒有α×α=0。
向量的外积与内积间有下一重要公式:
图7向量的混合积向量的混合积:下面这一把向量的外积和内积结合在一起的乘积也是很有用的:(α×b)・c,称为α,b,c的混合积,也记成(α,b,c)。它是一个数而不是向量。
如果
则可以用行列式来表示混合积:
由此可见
在几何上,如果把α,b,c的起点都放在同一点O,则(α×b)・c的模表示由这三向量为邻边构成的平行六面体的体积(图7)。
图8单位向量向量的分解:正如力、速度等可分解为分力、分速度等等,向量也可分解为分向量,即如果α=bc,则称α被分解为两分向量b,c。 常用的分解为:在取定坐标系后,分别记沿x轴、y轴、z轴正向的单位向量为i,j,k(图8)。即i={1,0,0},,j={0,1,0},={0,0,1},则任何向量α={x,y,z}可分解为
注意到i,j,互相垂直,且
则也可利用上述分解式来进行向量计算,完全可按通常代数运算来进行。例如
有时只考虑位于同一平面中的向量,这时向量还可用复数来表示(见复数)。 向量概念还可推广到维数更高的空间或更为抽象的空间中去。 还可考虑向量(依赖于自变量时)的微分、积分等等分析运算(见向量分析)。
向量_向量 -向量公式总结
1.单位向量:单位向量a0=向量a/|向量a|2.P(x,y)那么向量OP=x向量i+y向量j
|向量OP|=根号(x平方+y平方)
3.P1(x1,y1)P2(x2,y2)
那么向量P1P2={x2-x1,y2-y1}
|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2}
向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2
Cosα=向量a*向量b/|向量a|*|向量b|
(x1x2+y1y2)
=――――――――――――――――――――
根号(x1平方+y1平方)*根号(x2平方+y2平方)
5.空间向量:同上推论
(提示:向量a={x,y,z})
6.充要条件:
如果向量a⊥向量b
那么向量a*向量b=0
如果向量a//向量b
那么向量a*向量b=±|向量a|*|向量b|
或者x1/x2=y1/y2
7.|向量a±向量b|平方
=|向量a|平方+|向量b|平方±2向量a*向量b
=(向量a±向量b)平方
向量_向量 -参考资料
[1] 搜狐教育 http://learning.sohu.com/20040916/n222077758.shtml[2]中国教师站http://www.cn-teacher.com/Article/shuxue/g1/200702/126021.html
[3] 向量运算 http://elearning.stut.edu.tw/mechanical/Statics/newpage18.htm