选址模型是用于求解最优选址问题的运筹学模型。
选址模型_选址模型 -选址模型
选址模型_选址模型 -正文
用于求解最优选址问题的运筹学模型。最优选址问题是指:已知若干现有设施的地址,确定一个或几个新设施的地址。这里设施的含意是广义的,可以指提供服务的设施,也可以指需要服务的设施。最优选址问题的典型例子有:已知工厂和用户的位置,确定新仓库的最优地址;已知供电区域,选择发电厂的最优地址;已知一组油井的位置,确定炼油厂的最优地址;已知读者服务区域,选择图书馆的最优地址等。最优选址问题分单源选址问题和多源选址问题。单源选址问题是已知若干个现有设施,选择一个新设施的最优地址。多源选址问题则是已知若干个现有设施,选择两个或多个新设施的最优地址。多源选址问题还要确定哪个新设施应为哪些现有设施服务,或哪些现有设施应为哪个新设施服务。这里包含着分配问题,所以又称为选址-分配问题。选址问题还可以分为连续型选址问题和离散型选址问题。连续型选址问题是假定待选区域中任一点的地位均与其他点的地位相同,因而在数学上就有无限多个可能的地点存在。离散型选址问题则是假定待选区域内只有有限多个事先已经知道的位置。单源连续型选址问题设(xj,yj)是需要供应或服务的已知点在平面上的坐标,(x,y)是待求的源的坐标;cj是单位货物发送单位距离的运价;bj是各需求点对货物的需求量(j=1,2,…,n)。从(x,y)到任一需求点(xj,yj)的运费是bjcj【(x-xj)2+(y-yj)2】1/2,如令dj=【(x-xj)2+(y-yj)2】1/2,则运费为bjcjdj。因此,从(x,y)到所有需求点的总运费
。求此函数关于x和y的偏导数,并使其等于0,即可求得它的极小值。即它们无法用显式解出,只有用迭代法求解。即d