超巨星(supergiant):光度、体积比巨星大而密度较小的恒星。它们是光度最强的恒星之一。它们的绝对星等亮于-2等。肉眼所见的最亮的蓝(热)超巨星是参宿七和天津四;最亮的红(冷)超巨星是参宿四(见右图左上黄色星)和心宿二。超巨星的质量有人认为应大于5 个太阳质量。由于光谱型相同的恒星其表面温度也相同,因而单位表面积的辐射能率也必相同。
超巨星_超巨星 -特点
特超巨星
超巨星的光度很大,说明其表面积显然比光谱型相同的非超巨星
大。例如食双星,仙王座VV中的红超巨星,其半径大约为太阳半径的1300-1900倍,绝对星等为-6.91,约比太阳亮48000倍,总辐射能量则高达太阳的30万倍。而蓝超巨星
天津四的绝对星等为-8.37,约比太阳亮190000倍。已测到一些蓝超巨星,黄超巨星和红超巨星的射电辐射,这对于研究其大气结构和活动,星周物质,星风和质量损失等问题十分重要。高能天文台2号卫星已测得猎户座ε,κ 等星的X射线,这和它们的星冕、星风等有关。超巨星明显地集中在银道面和旋臂附近。它们的动力学特性与银河系中的气体物质相似。60%的超巨星属于O,B星协或银河星团。超巨星的年龄和演化问题是十分重要的研究课题,争论较多。
超巨星的大小一般比太阳大25-500倍,某些红超巨星则可以超过太阳的1500倍。但是它们的质量一般只有太阳的10倍至50倍,因此它们的密度就比太阳的密度小的多。巨星的平均密度可以和地上气体的密度相比,而超巨星的密度只有水的密度的千分之一,这是一个有趣的现象。原来恒星世界的巨人,其实却是虚有其表的庞然大物。
超巨星_超巨星 -区分
矮星
(Dwarf star):像太阳一样的小主序星,如果是白矮星,就是像太阳一样的一颗恒星的遗骸。褐矮星没有足够的物质进行熔化反应。原指本身光度较弱的星,现专指恒星光谱分类中光度级为V的星,即等同于主序星。光谱型为O、B、A的矮星称为蓝矮星(如织女一、天狼),光谱型为F、G的矮星称为黄矮星(如太阳),光谱型为K及更晚的矮星称为红矮星(如南门二乙星)。但白矮星、亚矮星、“黑矮星”则另有所指,并非矮星。物质处在简并态的一类弱光度恒星“简并矮星”也不属矮星之列。“黑矮星”则是理论上估计存在的天体,指质量大致为一个太阳质量或更小的恒星最终演化而成的天体,它处于冷简并态,不再发出辐射能;也有人专指质量不够大(小于约0.08太阳质量)、已没有核反应能源的星体。
巨星
是在天文中指光度比一般恒星(主序星)大而比超巨星小的恒星。
区别
矮星、巨星和超巨星是如何区分的?
超巨星
超巨星是质量最大的恒星,在赫罗图上占据
着图的顶端,在约克光谱分类中属于Ia(非常亮的超巨星)或Ib (不很亮的超巨星),但最明亮的超巨星有时会被分类为0。超巨星的质量是太阳的10至70倍,亮度为太阳光度的30,000至数百万倍,半径变化也很大,通常是太阳半径的30至500倍,甚至超过1000倍太阳半径。斯特凡-波兹曼定律显示红超巨星的表面,单位面积辐射的能量较低,因此相对于蓝超巨星的温度是较冷的,因此有相同亮度的红超巨星会比蓝超巨星更巨大。因为她们的质量是如此的巨大,因此寿命只有短暂的一千万至五千万年,所以只存在于年轻的宇宙结构中,像是疏散星团、螺旋星系的漩涡臂,和不规则星系。在螺旋星系的核球中很罕见,也未曾在椭圆星系或球状星团中被观测到,因为这些天体都是由老年的恒星组成的。超巨星的光谱占据了所有的类型,从蓝超巨星早期型的O型光谱,到红超巨星晚期型的M型都有。参宿七,在猎户座中最亮的恒星,是颗蓝白色的超巨星,参宿四和天蝎座的心宿二则是红超巨星。超巨星模型的塑造依然是研究领域中活跃且有困难之处的区块,例如恒星质量流失的问题就仍待解决。新的趋势与研究方法则不只是要塑造一颗恒星的模型,而是要塑造整个星团的模型,并且借以比较超巨星在其中的分布与变化,例如,像在星系麦哲伦星云中的分布状态。宇宙中的第一颗恒星,被认为是比存在于如今的宇宙中的恒星都要明亮与巨大的。这些恒星被认为是第三星族,她们的存在是解释在类星体的观测中,只有氢和氦这两种元素的谱线所必须的。大部分第二型超新星的前身被认为是红超巨星,然而,超新星1987A的前身却是蓝超巨星。不过,可能在强大的恒星风将外面数层的气体壳吹散前他是一颗红超巨星。目前所知最大的几颗恒星,依据体积的大小而不是最亮或最重的,是大犬座VY、WOH G64、仙王座VV、仙王座 V354、人马座 KW、天鹅座 KY和仙王座μ (the Garnet Star)。 再找找
当然是中子星的密度大,公式是ρ(密度)=M(质量)/V(体积)。中子星的密度是10亿吨/每立方厘米,白矮星100万吨 /每立方厘米,超巨星小于一克/每立方厘米,金属锇22克/每立方厘米。