二次函数顶点式Y=a倍(x-h)的平方-k,在知道顶点的时候求解析式,在知道2个点时即可二次函数抛物线顶点式&顶点坐标,顶点式:y=a(x-h)^2+k,顶点坐标:(h,k)这个公式在生活中很多地方都可以用到,他说白了就是扔东西所走的路线。
顶点坐标_顶点坐标 -二次函数抛物线顶点式&顶点坐标
顶点式:y=a(x-h)^2+k (a≠0,k为常数,x≠h)
顶点坐标:(-b/2a,(4ac-b^2)/4a)
顶点坐标_顶点坐标 -解释
在二次函数的图像上
顶点式:y=a(x-h)^2;+k抛物线的顶点P(h,k)
顶点坐标:对于二次函数 y=ax^2;+bx+c 其顶点坐标为 (-b/2a,(4ac-b^2;)/4a)
顶点坐标_顶点坐标 -考点扫描
1.会用描点法画出二次函数的图象.
顶点坐标
2.能利用图象或配方法确定抛物线的开口方向及对称轴、顶点的位置.
3.会根据已知图象上三个点的坐标求出二次函数的解析式.
顶点坐标_顶点坐标 -名师讲解
1.二次函数y=ax²,y=a(x-h)²,y=a(x-h)²+k,y=ax²+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:
解析式
y=ax²
y=a(x-h)²
y=a(x-h)²+k
y=ax²+bx+c
顶点坐标
[0,0]
[h,0]
[h,k]
[-b/2a,(4ac-b²)/4a]
对称轴
x=0
x=h
x=h
x=-b/2a
当h>0时,y=a(x-h)²的图象可由抛物线y=ax²向右平行移动h个单位得到,
当h<0时,则向左平行移动|h|个单位得到.
当h>0,k>0时,将抛物线y=ax²向右平行移动h个单位,再向上移动k个单位,就可以得
顶点坐标到y=a(x-h)²+k的图象;
当h>0,k<0时,将抛物线y=ax²向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;
当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)²+k的图象;
当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)²+k的图象;
因此,研究抛物线y=ax2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)²+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.
2.抛物线y=ax²+bx+c(a≠0)的图象:当a>0时,开口向上"当a<0时,开口向下,对称轴是直线x=-b/2a,顶点坐标是[ -b/2a,(4ac-b²)/4a]
3.抛物线y=ax²+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.4.抛物线y=ax²+bx+c的图象与坐标轴的交点:
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b2-4ac>0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax²+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x2-x1|=.
当△=0.图象与x轴只有一个交点;
当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.
5.抛物线y=ax²+bx+c的最值:如果a>0(a<0),则当x=时,y最小(大)值=.
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax²+bx+c(a≠0).
(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)²+k(a≠0).
(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a≠0).
7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.
顶点坐标_顶点坐标 -二次函数常用的一般形式
1.y=ax^2+bx+c(a≠0)
2.y=ax^2(a≠0)
3.y=ax^2+c(a≠0)
4.y=a(x-h)^2(a≠0)
5.y=a(x-h)^2+k(a≠0)←顶点式
6.y=a(x-x1)(x-x2)(a≠0)←交点式