铅酸蓄电池简介 铅蓄电池 铅蓄电池-简介,铅蓄电池-其结构

常用的充电电池除了锂电池之外,铅酸电池也是非常重要的一个电池统。铅蓄电池的优点是放电时电动势较稳定,缺点是比能量(单位重量所蓄电能)小,对环境腐蚀性强。铅蓄电池的工作电压平稳、使用温度及使用电流范围宽、能充放电数百个循环、贮存性能好(尤其适于干式荷电贮存)、造价较低,因而应用广泛。

铅蓄电池_铅蓄电池 -简介


铅蓄电池

铅蓄电池又称铅酸蓄电池,是蓄电池的一种,电极主要由铅制成,电解液是硫酸溶液的一种蓄电池。一般分为开口型电池及阀控型电池两种。前者需要定期注酸维护,后者为免维护型蓄电池。按电池型号可分为小密、中密及大密。

铅蓄电池(SealedRechargeableBattery):其体积和重量一直无法获得有效的改善,因此目前最常见还是使用在汽车、摩托车发动之上。铅酸电池最大的改良,则是新近采用高效率氧气重组技术完成水份再生,藉此达到完全密封不需加水的目的,而制成的“免加水电池”其寿命可长达4年(单一极板电压2V)。

铅蓄电池也是应用最广泛的电池之一。用一个玻璃槽或塑料槽,注满硫酸,再插入两块铅板,一块与充电机正极相连,一块与充电机负极相连,经过十几小时的充电,就成为一个蓄电池了。它的正负极之间有2伏的电压。蓄电池的好处就是可以反复多次使用。还有一个大优点就是它的内电阻极小,可以提供很大的电流。用它给汽车的起动机供电,瞬间电流可达20多安培,这是迄今任何其它电池都不能替代的。蓄电池充电时,是把供给它的电能变为他原能贮存起来,放电时又把化学能转化为电能。蓄电池体积太大,又不便携带。但汽车、摩托车还离不开它。

近日,发生在浙江省台州市路桥区峰江街道的139名村民血铅严重超标事件,再次引起公众对重金属污染的关注。在昨日中央9部委联合举行的全国环保专项行动电话会议上,环保部副部长张力军也提到了这起近期发生的事件,表示该起事件是因为当地政府未按规定完成居民搬迁所致。2011年全国环保专项行动的“重中之重”,就是对铅蓄电池全行业进行彻底排查,以遏制儿童血铅超标事件的高发态势。

仅2009年,全国即发生20多起血铅超标事故,2010年至今,类似事件也时有发生。比如近期发生的浙江台州的事件,以及稍早之前发生在安徽怀宁的血铅超标事件。此类事件之所以频频发生,除了“企业造假之外,与地方多个部门监管不到位有关系”,比如近期发生血铅事件的某地,环保部复查发现,有34%的中小铅蓄电池企业,在去年的专项排查中被遗漏。

对于即将开始的铅蓄电池企业全面排查,环保部要求做到“六个一律”,即未经环评或者环评不过关的一律停建;环境保护、安全设施、职业健康执行不到位的一律停产;污染治理设施不达标的一律停产;无危险废物资质从事废铅蓄电池回收的一律停产;不能依法达到卫生防护距离要求的一律停产;发生重大铅污染的,一律追究责任。

同时,要求各地在2011年7月30日前,在媒体上公布辖区内所有铅蓄电池企业(加工、组装和回收)名单,接受社会监督。

铅蓄电池_铅蓄电池 -其结构

铅酸蓄电池一般由正极板、负极板、隔板、电池槽、电解液和接线端子等部分组成。

正极板为二氧化铅板(PbO2),负极板为铅板(Pb)。

铅蓄电池_铅蓄电池 -工作原理


工作原理

铅蓄电池由正极板群、负极板群、电解液和容器等组成。充电后的正极板是棕褐色的二氧化铅(PbO2),负极板是灰色的绒状铅(Pb),当两极板放置在浓度为27%~37%的硫酸(H2SO4)水溶液中时,极板的铅和硫酸发生化学反应,二价的铅正离子(Pb2+)转移到电解液中,在负极板上留下两个电子(2e-)。由于正负电荷的引力,铅正离子聚集在负极板的周围,而正极板在电解液中水分子作用下有少量的二氧化铅(PbO2)渗入电解液。

其中两价的氧离子和水化合,使二氧化铅分子变成可离解的一种不稳定的物质――氢氧化铅〔Pb(OH)4)。氢氧化铅由4价的铅正离子(Pb4+)和4个氢氧根〔4(OH)-〕组成。4价的铅正离子(Pb4+)留在正极板上,使正极板带正电。由于负极板带负电,因而两极板间就产生了一定的电位差,这就是电池的电动势。当接通外电路,电流即由正极流向负极。

在放电过程中,负极板上的电子不断经外电路流向正极板,这时在电解液内部因硫酸分子电离成氢正离子(H+)和硫酸根负离子(SO42-),在离子电场力作用下,两种离子分别向正负极移动,硫酸根负离子到达负极板后与铅正离子结合成硫酸铅(PbSO4)。在正极板上,由于电子自外电路流入,而与4价的铅正离子(Pb4+)化合成2价的铅正离子(Pb2+),并立即与正极板附近的硫酸根负离子结合成硫酸铅附着在正极上。

铅蓄电池_铅蓄电池 -工作原理

铅蓄电池由正极板群、负极板群、电解液和容器等组成。充电后的正极板是棕褐色的二氧化铅
(PbO2),负极板是灰色的绒状铅(Pb),当两极板放置在浓度为27%~37%的硫酸(H2SO4)水溶液中时,极板的铅和硫酸发生化学反应,二价的铅正离子(Pb2+)转移到电解液中,在负极板上留下两个电子(2e-)。由于正负电荷的引力,铅正离子聚集在负极板的周围,而正极板在电解液中水分子作用下有少量的二氧化铅(PbO2)渗入电解液,其中两价的氧离子和水化合,使二氧化铅分子变成可离解的一种不稳定的物质――氢氧化铅〔Pb(OH)4)。氢氧化铅由4价的铅正离子(Pb4+)和4个氢氧根〔4(OH)-〕组成。4价的铅正离子(Pb4+)留在正极板上,使正极板带正电。由于负极板带负电,因而两极板间就产生了一定的电位差,这就是电池的电动势。当接通外电路,电流即由正极流向负极。在放电过程中,负极板上的电子不断经外电路流向正极板,这时在电解液内部因硫酸分子电离成氢正离子(H+)和硫酸根负离子(SO42-),在离子电场力作用下,两种离子分别向正负极移动,硫酸根负离子到达负极板后与铅正离子结合成硫酸铅(PbSO4)。在正极板上,由于电子自外电路流入,而与4价的铅正离子(Pb4+)化合成2价的铅正离子(Pb2+),并立即与正极板附近的硫酸根负离子结合成硫酸铅附着在正极上。
铅酸蓄电池用填满海绵状铅的铅板作负极,填满二氧化铅的铅板作正极,并用1.28%的稀硫酸作电解质。在充电时,电能转化为化学能,放电时化学能又转化为电能。电池在放电时,金属铅是负极,发生氧化反应,被氧化为硫酸铅;二氧化铅是正极,发生还原反应,被还原为硫酸铅。电池在用直流电充电时,两极分别生成铅和二氧化铅。移去电源后,它又恢复到放电前的状态,组成化学电池。铅蓄电池是能反复充电、放电的电池,叫做二次电池。它的电压是2V,通常把三个铅蓄电池串联起来使用,电压是6V。汽车上用的是6个[2]铅蓄电池串联成12V的电池组。铅蓄电池在使用一段时间后要补充蒸馏水,使电解质保持含有22~28%的稀硫酸。
放电时,正极反应为:PbO2+4H++SO42-+2e-=PbSO4+2H2O
负极反应:Pb+SO42--2e-=PbSO4
总反应:PbO2+Pb+2H2SO4===2PbSO4+2H2O(向右反应是放电,向左反应是充电)

铅蓄电池_铅蓄电池 -应用

目前铅蓄电池广泛应用于汽车、火车、拖拉机、摩托车、电动车以及通讯、电站、电力输送、仪器仪表、UPS电源和飞机、坦克、舰艇、雷达系统等领域。随着世界能源经济的发展和人民生活水平的日益提高,在二次电源使用中,铅蓄电池已占有85%以上的市场份额。铅酸蓄电池以技术成熟、成本低、大电流放电性能佳、适用温度范围广、安全性高,可做到完全回收利用等优点在汽车起动电池和电动车领域尚无法被其它电池取代。

铅蓄电池_铅蓄电池 -充电放电

随着蓄电池的放电,正负极板都受到硫化,同时电解液中的硫酸逐渐减少,而水分增多,从而导致电解液的比重下降在实际使用中,可以通过测定电解液的比重来确定蓄电池的放电程度。在正常使用情况下,铅蓄电池不宜放电过度,否则将使和活性物质混在一起的细小硫酸铅晶体结成较大的体,这不仅增加了极板的电阻,而且在充电时很难使它再还原,直接影响蓄池的容量和寿命。铅蓄电池充电是放电的逆过程。
铅酸蓄电池充、放电化学反应的原理方程式如下:
正极:PbO2+2e-+SO42-+4H+==PbSO4+2H2O
负极:Pb-2e+SO42-==PbSO4
阴极:PbSO4+2e-=Pb+SO42-;
阳极:PbSO4+2H2O-2e-=PbO2+4H++SO42-。
总反应:PbO2+2H2SO4+Pb==2PbSO4+2H2O(正向放电,逆向充电)
(铅蓄电池在放电时正负极的质量都增大,原因:铅蓄电池放电时,正极极板上有PbSO4附着,质量增加:负极极板上也有PbSO4附着,所以质量也增加。)

铅蓄电池_铅蓄电池 -使用条件

(1)避免将电池与金属容器直接接触,应采用防酸和阻热材料,否则会引起冒烟或燃烧。
(2)使用指定的充电器在指定的条件下充电,否则可能会引起电池过热、放气、泄露、燃烧或破裂。(3)不要将电池安装在密封的设备里,否则可能会使设备浦破裂。
(4)将电池使用在医护设备中时,请安装主电源外的后备电源,否则主电源失效会引起伤害。
(5)将电池放在远离能产生火花设备的地方,否则火花可能会引起电池冒烟或破裂。
(6)不要将电池放在热源附近(如变压器),否则会引起电池过热、泄漏、燃烧或破裂。
(7)应用中电池数目超过一只时,请确保电池间连接无误,且与充电器或负载连接无误,否则会引起电池破裂、燃烧或电池损害,某些情况下还会伤人。
(8)特别注意别让电池砸在脚上。
(9)电池的指定使用范围如下。超出此范围可能会引起电池损害。电池的正常操作范围为:77.F(25℃)电池放电后(装在设备中):5.F到122.F(-15℃到50℃)充电后:32.F到104.F(0℃到40℃)储存中:5.F到104.F(-15℃到40℃)
(10)不要将装在机车上的电池放在高温下、直射阳光中、火炉或火前,否则可能会造成电池泄漏、起火或破裂。
(11)不要在充满灰尘的地方使用电池,可能会引起电池短路。在多尘环境中使用电池时,应定期检查电池。

铅蓄电池_铅蓄电池 -工作性能


对三种不同使用类型电池的典型负极配方如表1

1、干荷电极板
众所周知,对于汽车起动电池,包括摩托车用均喜欢干荷电型.用户只需注入所需浓度和数量的稀硫酸,静置片刻,不必进行初充电即可使用。干荷电电池的生产关键是控制负极板在化成后的洗涤、干燥、装配甚至储存中,活性物质不被大量氧化,而失去活性。为了防止氧化,采用不同的干燥方法,中国多数生产厂家采用配方法,即在负极铅膏中加入不同的防氧化剂,化成好极板经洗涤后再浸硼酸、甘油或木糖醇等浸渍液。铅膏中的防氧化剂大多数生产厂家使用α-羟基β-萘酸(简称1.2酸)或硬酯酸类(少数厂家)。最近几年提出。用液体石蜡代替1.2酸,使用1.2酸的配方法,应用广泛,工艺成熟,但有如下缺点:(1)对鼻膜有刺激、呛人;(2)充电接受能力差,化成时常常表现出滞后于正极,(3)价格较贵,(4)与木素磺酸钠配合时,电池经几次循环容量明显下降。硬脂酸配方法因硬脂酸为蜡状固体,不易分散,合膏时混合不均。液体石蜡是石油化工产品,是一种混合烃,为无色无味的油状液体,不溶于水。价格便宜,密度为0.89,燃点稍高于245℃,杂质含量很低,分子量平均为490。合膏时无需乳化或喷淋,加水后或加酸后加入均可,易于分散,合膏均匀,与木素磺酸钠合用,未发现容量下降,铅膏的弹塑性好,易于填涂。日本在若干年前就使用一种矿物油进行干荷,估计就是液体石蜡。目前,在国内尚未为大多数厂家所接受,尚存疑虑。已经过大量的试验:5s放电电压、低温起动放电、极板铅含量分析、储备容量、充电接受、荷电保持、循环寿命等进行了全面的试验,结果表明各项指标均符合技术要求,效果很理想。我们在实验室也进行过验证,用循环伏安法和小片试样证明用液体石蜡代替1.2酸,具有以下优点:析氢过电位高,充电时析氢少,极板可逆性好,即充电接受能力得到改善,鉴于上述结果,可完全打消疑虑放心在生产上使用。

荷电极板的生产不仅仅用于汽车起动型,部分阀控密封摩托车电池也用干荷式,电动自行车蓄电池的生产当采用槽化成工艺时,为了减少装配后的补充充电时间,也采用干荷极板工艺,有的生产厂也有使用液体石蜡为防氧化剂的,同样取得了好的效果,实践证明,液体石蜡做为防氧化剂代替1.2酸或硬脂酸工艺完全可行。值得注意的是,在阀控密封电池中,负极组成含有1.2酸是非常不利的,因为负极在循环中的充电,同时有3个可能的反应,PbSO4的还原、H+离子还原为氢,O2的还原。1.2酸的存在既不利于PbO4的还原,也不利于O2的还原,O2的还原即O2的吸收在该类电池中是很重要的。我们建议最好不使用1.2酸而使用液体石蜡。甚至在干荷摩托车和自行车电池中,负极配方可不加防氧化剂,只在化成后经水洗浸硼酸,就可以满足要求,因为电池密封,在贮存过程中没有防氧化问题,只是化成后的洗涤、干燥中防氧化,硼酸对电池性能无害,还可以降低正极的自放电。


硫酸钡为无机膨胀剂,它与PbSO4具有近似的结晶参数,如表2。

2、不同用途电池的典型配方
铅酸蓄电池虽然品种较多,但按其使用特点主要分为三大类别:起动用(以汽车电池为代表)、动力型(以牵引车电池为代表)、固定型(以通信电池为代表)。 对汽车起动要求大电流低温起动,低温可达―40℃,一般以5分钟率电流起动,然后以浮充方式进行充电。动力型电池,以中等速率进行深放电,也具有短时间大电流放电性能,然后进行恒压或恒流充电,为典型的循环使用方式。固定型电池为备用电源,不定期的使用,经常以恒压并联方式进行浮充电。BaSO4是各种用途的蓄电池都必须加入的无机膨胀剂,但对低温起动的去钝化作用不够,还必须与有机膨胀联合使用。没有膨胀剂负极活性物质,在充放电的循环中,放电时形成致密少孔的PbSO4层覆盖在铅上。这种缺孔沉积物的形成,引起活性物质的紧结收缩,极大地降低负极的比表面积,使得负极在相当少的循环后就丧失工作能力。

在负极组分中加入某些添加剂,可以减缓这种收缩倾向,通常称为膨胀剂,准确地说是防收缩剂。硫酸钡为无机膨胀剂,它与PbSO4具有近似的结晶参数,如表2。在负极活性物质中加入高分散的同晶硫酸钡或硫酸锶,放电时可以做为硫酸铅的结晶中心,硫酸铅可以在硫酸钡上析出,而无需形成硫酸铅的结晶中心,这样就不会产生由于要形成晶核而必须的过饱和度,这带来两点好处,首先浓差过电势降低,其次在低过饱和度条件下所形成的硫酸铅层压实程度小于高过饱和度下所形成的硫酸铅层,这有利于硫酸的扩散,有利于电极的深度放电。硫酸钡是惰性的,不参加电极的氧化还原过程,它高度分散于活性物质之中,使放电时生成的PbSO4不是覆盖在金属铅上形成致密连续的钝化层,而是保持电极物质的发达的比表面积,充电时防止收缩。


当BaSO4与有机膨胀剂联合使用时,其去钝化作用将加强,使低温大电流放电时间延长,并能在循环过程中保持其去钝化作用,故在汽车起动电池中,这时既要求大电流保持一定时间,又要保持一定电压时(即要求一定功率才能起动),必须无机与有机膨胀剂联合使用。

当BaSO4与有机膨胀剂联合使用时,其去钝化作用将加强,使低温大电流放电时间延长,并能在循环过程中保持其去钝化作用,故在汽车起动电池中,这时既要求大电流保持一定时间,又要保持一定电压时(即要求一定功率才能起动),必须无机与有机膨胀剂联合使用。在固定型电池中,用电设备和蓄电池均放在室内无低温起动问题,此外,由于恒压浮充电要求单格电池之间的电压一致性要好,而有机膨胀剂强烈的影响氢的过电势,结果引起电池之间电压的不一致,所以在固定型电池的负极中不加有机膨胀剂,以减少电压不一致的影响因素,尤其在密封电池中影响电压不一致性的因素较多,取消有机膨胀剂,而适当多加一些BaSO4。最近几年提高了BaSO4的含量到1.0%,改善了负极活性物质的寿命。

有机膨胀剂的种类很多,有从植物中提取的天然物质,也有合成的,国外进行了大量的研究。在国内使用的有机膨胀剂大多数厂家为腐植酸,通常以小于1%的数量加到负极铅膏中,可以明显提高电池的常温、低温起动容量和寿命。腐植酸通常是以泥煤、褐煤、草炭等为原料,用碱法或酸法制造的。一般酸法腐植酸杂质、水分均较高。由于生产原料不同,各地区生产的腐植酸对蓄电池性能的影响也各异,需注意选择使用。在更低的温度下如-40℃,腐植酸难以满足电池的性能要求,故还需要采用一些其他的有机膨胀剂单独使用,或与腐植酸联合使用。最广泛使用的是木素磺酸钠,它们对活性物质的确切机理还不十分清楚,但它们吸附在电极上,对负极的比表面积和结晶形态有巨大影响,是铅膏流变性和可塑性的调节剂。

国内通常使用的木素磺酸钠有3种:国产吉林开山屯产、日本进口及挪威木素(VanisperseA)。此外,有机膨胀剂还有栲胶类如橡惋栲胶、鸡血藤栲胶、3#合成鞣剂等,这些有机膨胀剂对电池的-40℃的起动都有良好作用,但其充电接受能力不理想,耐循环也较差。这些诸多的有机膨胀剂对蓄电池性能的影响,国内尚缺乏横向比较数据,已知国产木素磺酸钠合膏工艺性差,合出的膏稀而表观密度又大,山西师范大学附属工厂对此已进行了改进。鉴于木素磺酸钠与腐植酸各具优点,目前,行业比较推崇腐植酸与木素磺酸钠混合使用或二者进行复合,但两者混合比例的最佳选择尚未见公开报道。F.Saez指出对电池性能具有极其优良作用的是那些具有平均分子量偏低的物质,发现其分子中的羧基与容量的关系,高的羧基有利于改善电极容量和降低自放电;甲氧基对冷起动有负面作用,有机硫含量加速自放电,酚族含量对循环寿命、自放电、充电接受具有复杂的关系。一般膨胀剂在低浓度时,对活性物质利用率呈现最大好处,恒流放电时,利用率的改善是在含量为0.25%~0.5%时,含量再高利用率增加甚微,这表明有机膨胀剂存在着一个最大的表面吸附。


BaSO4的含量对电池的寿命和起动时间的关系如图2。最近几年提高了 BaSO4的含量到1.0%,改善了负极活性物质的寿命。

DavidP.Boden对8种含有不同有机膨胀电极与空白电极对比试验表明:每种膨胀剂均具有一个最优的含量。不含膨胀剂时利用率5小时率一般为0.07Ah/g。一种合成的BomerB最高达0.147Ah/g(0.75%含量),随放电速率增加而减小,随温度升高而增加。含有VanispersA(挪威木素)的电池具有最长的循环寿命(室温1000次循环,含0.75[%]时),也给出较好的利用率,室温含量0.25[%]时为0.132Ah/g。研究结果表明:所有的膨胀剂均改善了电池的容量和寿命,全部电池在循环过程中比表面积下降,说明活性物质失去活性,失去活性的原因有几种可能:膨胀剂形成有机铅化合物、膨胀剂在稀硫酸中化学降解、被活性物质覆盖、在高pH区溶解随后迁至正极被氧化。膨胀剂失效后,降低了活性物质的比表面积,改变了负极形貌,使电极紧结收缩,从而降低充电效率,使电极容量下降,寿命终止。

在负极配方中加入导电物质炭黑类,也已经成为不可缺少的,尤其在阀控密封电池中,由于负极具有吸收O2的功能,使得负极经常处于充电不足的状态,总有一部分不导电的PbSO4存在,如果没有导电物质存在,一旦发生过放电.就很难使PbSO4还原的充电顺利进行。F.Saez等经研究表明,在电动汽车电池中,负极炭黑含量由0.28%增加到0.56%时,电池的循环寿命明显延长。MasaakiShiomi等在研究炭黑的作用中指出[9],炭黑对PbSO4结晶无影响,使电池寿命增加,是由于导电作用,炭黑在电极中形成导电的网络。不含炭黑的PbSO4充电时充入400[%]的理论容量时,仅有35[%]的PbSO4转化为Pb。而当负极中含有炭黑为3倍的通常含量时(通常可能为0.28%)充电迅速,仅仅用120%的电量,几乎全部PbSO4均能还原。当含炭黑10倍于通常含量时,甚至于循环240000次的电池,其放电终止电压下降也不明显。 我们在实验室也曾验证过炭黑的作用,当在负极中含有0.20%炭黑时化成很难进行,而当将炭黑提高到0.4%时,化成得以顺利进行。国内负极配方中的炭黑多为乙炔黑,以千分之几的量加入。

3关于预混合
负般配方中组分较多,以何种方式加到铅粉中,各生产厂大同小异,总的来看没有经过预先混合,一般是与铅粉进行干混,搅拌一定时间,然后先加水,后加酸。在使用木素磺酸钠做膨胀剂时。有的厂先将木素磺酸钠溶在配方水中进行合膏。据称国外生产厂均进行辅料的预混合,就是将各种材料BaSO4、炭黑、有机膨胀剂按比例加一定的配方水,放置在一容器中搅拌一定时间,合膏时加到铅粉中,最后加酸。 预混合的最大好处就是均匀,减少极板之间不均匀的因素,建议生产厂不妨一试。

铅蓄电池_铅蓄电池 -其故障分析


铅蓄电池

在铅蓄电池的检测过程中,常常会遇到铅蓄电池出现故障和异常数据而使检测无法进行或使试验提前终止。因此,掌握故障分析对检测工作是很重要的。
一、故障现象及原因
1、反极的现象及原因
铅蓄电池的反极系指蓄电池的正负极发生了改变,反极现象反映在两个方面,一是由于铅蓄电池在装配组装时某单格电池极群组接反或整个电池极群组接反。这种情况下会出现铅蓄电池灌完酸用电压表测量端电压时其端电压值小于各单体蓄电池额定电压之和的现象或出现端电压为负的现象。另一方面是铅蓄电池在容量放电时在多个串联使用中,由于某个蓄电池(或某单体蓄电池)容量较低或完全丧失容量。在放电时这个电池很快被放完电被其它电池进行反充电,使原来的负极变成正极,原来的正极变成负极,端电压出现负值的现象。

对于前一种反极故障,在测量蓄电池端电压时(多个单体电池组成的蓄电池)都可发现,若有一个单体电池反极,不仅失去该电池的2V电压,而且还要增加2V反电压,端电压要降低4V左右。例如,对于额定电压为12V的电池,如测量其端电压为8V左右,说明有1个单格电池反极。如测量其端电压为4V左右说明有2个单格反极,如测量其端电压为―4V左右说明有4个单格反极,如测量其端电压为―12V说明6个单格均反极。对于后一种反极故障,其端电压值(负值)随放电情况而不同。一般在检测时,对于这种情况要及时将蓄电池从放电线路中摘除下来,以免对蓄电池有所损坏。

2、短路现象及原因
铅蓄电池的短路系指铅蓄电池内部正负极群相连。铅蓄电池短路现象主要表现在以下几个方面:
(1)开路电压低,闭路电压(放电)很快达到终止电压。
(2)大电流放电时,端电压迅速下降到零。
(3)开路时,电解液密度很低,在低温环境中电解液会出现结冰现象。
(4)充电时,电压上升很慢,始终保持低值(有时降为零)。
(5)充电时,电解液温度上升很高很快。
(6)充电时,电解液密度上升很慢或几乎无变化。
(7)充电时不冒气泡或冒气出现很晚。

造成铅蓄电池内部短路的原因主要有以下几个方面:
(1)隔板质量不好或缺损,使极板活性物质穿过,致使正、负极板虚接触或直接接触。
(2)隔板窜位致使正负极板相连。
(3)极板上活性物质膨胀脱落,因脱落的活性物质沉积过多,致使正、负极板下部边缘或侧面边缘与沉积物相互接触而造成正负极板相连。
(4)导电物体落入电池内造成正、负极板相连。
(5)焊接极群时形成的“铅流”未除尽,或装配时有“铅豆”在正负极板间存在,在充放电过程中损坏隔板造成正负极板相连。


铅蓄电池

3、极板硫酸化现象及原因
极板硫酸化系指在极板上生成白色坚硬的硫酸铅结晶,充电时又非常难于转化为活性物质的硫酸铅。铅酸蓄电池极板硫酸化后主要有以下几种现象。
(1)铅蓄电池在充电过程中电压上升的很快,其初期和终期电压过高,终期充电电压可达2.90V/单格左右。
(2)在放电过程中,电压降低很快,即过早的降至终止电压,所以其容量比其它电池显着降低。
(3)充电时,电解液温度上升的快,易超过45℃。
(4)充电时,电解液密度低于正常值,且充电时过早地发生气泡。
(5)电池解剖时可发现极板的颜色和状态不正常。正极板呈浅褐色(正常为深褐色),极板表面有白色硫酸铅斑点,负极板呈灰白色(正常为灰色)极板表面粗糙,触摸时如同有砂粒的感觉,并且极板发硬。
(6)严重的硫酸盐化,极板形成的硫酸铅白色结晶体粗大,在一般情况下不能复原成活性物质。

造成极板硫酸化主要有以下几方面的原因。
(1)铅蓄电池初充电不足或初充电中断时间较长。
(2)铅蓄电池长期充电不足。
(3)放电后未能及时充电。
(4)经常过量放电或小电流深放电。
(5)电解液密度过高或者温度过高,硫酸铅将深入形成不易恢复。
(6)铅蓄电池搁置时间较长,长期不使用而未定期充电。
(7)内部短路局部作用或电池表面水多造成漏电。
(8)电解液不纯,自放电大。
(9)电池内部电解液面低,使极板裸露部分硫酸化。

4、极板弯曲和腐蚀断裂
极板弯曲多发生于正极板,而负极板很少发生,有的负极板弯曲则是由于正极板弯曲过甚而迫使负极板亦随之弯曲所致。极板的断裂多发生于使用寿命过程中,由于板栅腐蚀,强度变小,造成极板断裂,尤其正极板栅表现更为严重,造成极板弯曲主要原因有以下几个方面:
(1)极板活性物质在制造过程中因形成或涂膏分布不均匀,因此,在充放电时极板各部分所起的电化作用强弱不均匀,致使极板上活性物质体积的膨胀和收缩不一致而引起弯曲,有的造成开裂。

(2)过量充电或过量放电,增加了内层活性物质的膨胀和收缩,恢复过程不一致,造成极板的弯曲。

(3)大电流放电或高温放电时,极板活性物质反应较激烈,容易造成化学反应不均匀而引起极板弯曲。

铅酸蓄电池简介 铅蓄电池 铅蓄电池-简介,铅蓄电池-其结构

(4)蓄电池中含有杂质,在引起局部作用时,仅有小部分活性物质变成硫酸铅,致使整个极板的活性物质体积变化不一致,造成弯曲。


铅蓄电池

造成正极板腐蚀断裂主要有以下几方面原因:
(1)制造板栅合金工艺有问题,引起极板在充放电过程中不耐腐而断裂。
(2)充电时,正极板栅处于阳极极化的条件下,经常过量充电是正极板腐蚀断裂的主要原因。
(3)电解液密度过高,温度过高,正极板氧化腐蚀加剧。
(4)铅蓄电池的电解液中,含有正极板栅有腐蚀作用的酸类或其它有机物盐类,都会逐渐腐蚀正极板栅。这些对正极板栅有害的酸类、盐类可能来自硫酸蒸馏水中,也可能从隔板或其它部件里浸出,因此,在充放电循环中,极板或正极扳栅不断地,被腐蚀。
(5)正极板受腐蚀的过程,也就是氧化膜生成的过程,因此板栅的线性尺寸有所增加,这就造成了板栅的变形或膨胀。

正极板栅腐蚀和变形的特征:
(1)电解液混浊,极板呈腐烂状。
(2)正极板活性物质,由于板栅受到腐蚀而失去了应有的强度和凝固性,造成脱落,这种脱落往往是呈块粒状。
(3)由于正极板栅的腐蚀,引起活性物质脱落,这不仅破坏了活性物质的细孔组织,而且有效物质的数量也逐渐减少。这必然造成电池的容量下降,循环寿命缩短。

正极板栅腐蚀机理:
(1)二氧化铅表面析出氧腐蚀:当阳极充电时,正极析出氧,这些氧以“超化学当量的原子”的形式进入二氧化铅的晶格中,并透过氧化物层扩散到金属表面,把金属氧化。氧化金属是决定铅的正极腐蚀速度的基本过程,温度升高极化加强,引起氧扩散速度增加,腐蚀速度加快。
(2)催化腐蚀:二氧化铅在正极析出氧的反应中是一种催化剂。氧在析出时,是以中间产物自由基的形式出现。例如:・OH、

  

爱华网本文地址 » http://www.aihuau.com/a/8104030103/157579.html

更多阅读

铅酸蓄电池充电方法 铅酸蓄电池修复

铅酸蓄电池充电方法——简介铅酸蓄电池的充电方法是一个很笼统的说法;不同类型的铅酸蓄电池、不同应用场景、不同的放电深度,都有不同的充电方法。铅酸蓄电池有许多种类,目前应用最广泛的有阀控式密闭蓄电池(常说的AGM电池即指这一类)

铅酸蓄电池最佳充电方法 铅酸蓄电池修复

蓄电池充电编辑上世纪60年代中期,美国科学家马斯对开口蓄电池的充电过程作了大量的试验研究,并提出了以最低出气率为前提的,蓄电池可接受的充电曲线,如图1所示。实验表明,如果充电电流按这条曲线变化,就可以大大缩短充电时间,并且对电池的

铅酸蓄电池的容量与计算方式 raid容量计算方式

首先从铅酸蓄电池类型来分,主要分为三类,分别为普通蓄电池、干荷蓄电池和免维护蓄电池三种。1.普通蓄电池;普通蓄电池的极板是由铅和铅的氧化物构成,电解液是硫酸的水溶液。它的主要优点是电压稳定、价格便宜;缺点是比能低(即每公斤蓄电

铅酸蓄电池行业会好吗 铅酸蓄电池行业

要解决这些问题,需要国家加大对铅酸蓄电池科研的投入,需要以国家层面对整个行业产业链进行规范,需要对无生产能力的企业加强管理与整合,需要完善起强大的电池回收与处理系统,更需要社会公众和媒体环保行为的参与和支持铅酸蓄电池:老产品发

有关铅酸电池电解液配方 铅酸蓄电池电解液

试验了电解液中不同添加剂对电池充电接受能力和循环寿命的影响;结果表明:添加0.5%的SnSO4改善了电池的充电接受能力和循环寿命,达到了430次循环,循环寿命比添加Na2SO4的电池提高了40%.铅酸蓄电池充放电的过程是电化学反应的过程,充电时

声明:《铅酸蓄电池简介 铅蓄电池 铅蓄电池-简介,铅蓄电池-其结构》为网友鬼马情人分享!如侵犯到您的合法权益请联系我们删除