多项式除法是除法的一种类型,俗称长除。适用于整式除法、小数除法、多项式除法(即因式分解)等较重视计算过程和商数的除法,过程中兼用了乘法和减法。是代数中的一种算法,用一个同次或低次的多项式去除另一个多项式。是常见算数技巧长除法的一个推广版本。它可以很容易地手算,因为它将一个相对复杂的除法问题分解成更小的一些问题。
多项式除法_多项式除法 -一般步骤
多项式除法示例多项式除以多项式的一般步骤:
多项式除以多项式一般用竖式进行演算
(1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐.
(2)用被除式的第一项去除除式的第一项,得商式的第一项.
(3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来.
(4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式。
多项式除法_多项式除法 -举例
计算把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐,写成以下这种形式:
然后商和余数可以这样计算:
将分子的第一项除以分母的最高次项(即次数最高的项,此处为x)。结果写在横线之上(x3÷x=x2).
将分母乘以刚得到结果(最终商的第一项),乘积写在分子前两项之下(同类项对齐)(x2・(x?3)=x3?3x2).
从分子的相应项中减去刚得到的乘积(消去相等项,把不相等的项结合起来),结果写在下面。((x3?12x2)?(x3?3x2)=?12x2+3x2=?9x2)然后,将分子的下一项“拿下来”。
把减得的差当作新的被除式,重复前三步(直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式)
重复第四步。这次没什么可以“拿下来”了。
横线之上的多项式即为商,而剩下的(?123)就是余数。
算数的长除法可以看做以上算法的一个特殊情形,即所有x被替换为10的情形。
多项式除法_多项式除法 -整除
如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除。多项式除法_多项式除法 -应用
多项式的因式分解
有时某个多项式的一或多个根已知,可能是使用有理根定理(Rationalroottheorem)得到的。如果一个次多项式的一个根已知,那么可以使用多项式长除法因式分解为的形式,其中是一个次的多项式。简单来说,就是长除法的商,而又知是的一个根、余式必定为零。相似地,如果不止一个根是已知的,比如已知和这两个,那么可以先从中除掉线性因子得到,再从中除掉,以此类推。或者可以一次性地除掉二次因子。
使用这种方法,有时超过四次的多项式的所有根都可以求得,虽然这并不总是可能的。例如,如果有理根定理(Rationalroottheorem)可以用来求得一个五次方程的一个(比例)根,它就可以被除掉以得到一个四次商式;然后使用四次方程求根的显式公式求得剩余的根。
寻找多项式的切线
多项式长除法可以用来在给定点上查找给定多项式的切线方程。如果R(x)是P(x)/(x-r)2的余式――也即,除以x2-2rx+r2――那么在x=r处P(x)的切线方程是y=R(x),不论r是否是P(x)的根。