两分法悖论 芝诺悖论 芝诺悖论-概述,芝诺悖论-两分法

芝诺悖论是古希腊数学家芝诺提出的一系列关于运动的不可分性的哲学悖论。由于量子的发现,这些悖论已经得到完善的解决。这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。芝诺提出这些悖论是为了支持他老师巴门尼德关于“存在”不动、是一的学说。这些悖论中最著名的两个是:“阿基里斯跑不过乌龟”和“飞矢不动”。这些方法可以用微积分(无限)的概念解释,但还是无法用微积分解决,因为微积分原理存在的前提是存在广延(如,有广延的线段经过无限分割,还是由有广延的线段组成,而不是由无广延的点组成。),而芝诺悖论中既承认广延,又强调无广延的点。这些悖论之所以难以解决,是因为它集中强调后来笛卡尔和伽桑迪为代表的机械论的分歧点。

芝诺悖论_芝诺悖论 -概述


芝诺悖论芝诺悖论(Zeno'sparadoxes)是古希腊数学家芝诺(ZenoofElea,约前490-前425)提出的一系列关于运动的不可分性的哲学悖论。传说芝诺在五岁的时候,他父亲曾经考他,从他们家到外婆家有五公里路,他以每小时五公里的速度走,需要走多少时间。芝诺答是一个小时,父亲给他了一颗糖吃,因为他答对了。十年后,等他十五岁时,父亲又拿这个问题问他时,他知道这下如果再答是一个小时肯定要挨骂。因为,很显然这回父亲考的再不是他的算术能力。父亲是在考他的判断、分析、思辩等多方面的能力,他需要找出另外一种答案来博得父亲的嘉许。最后,他告诉父亲:他永远也走不到外婆家。父亲想当然地替他回答了原因:因为外婆已经去世,外婆家已经不存在。这事实上也是父亲要的答案。父亲问这个问题的目的就是要儿子打开思路。但年少的芝诺说:不,父亲,你这是偷换概念,不是在用数学说明问题。父亲哈哈大笑说:那你用数学来说明一下。他根本不相信,这还能用数学来解释。芝诺说:我可以把五公里一分为二,然后又把一分为二的五公里再一分为二,这样分下去、分下去,可以分出无穷个“一分为二”,永远也分不完。既然永远分不完,你也就永远走不到。芝诺正是这样创造了他流芳百世的悖论学。几百年后,有人以芝诺悖论为据,研制了世上的第一部数学密码――无字密码。(从数学角度讲,芝诺悖论可以用一个数学公式来简化:1/0=无穷)。

芝诺悖论_芝诺悖论 -两分法

芝诺:“一个人从A点走到B点,要先走完路程的1/2,再走完剩下总路程的1/2,再走完剩下的1/2……”如此循环下去,永远不能到终点。
假设此人速度不变,走一段的时间每次除以2,时间为实际需要时间的1/2+1/4+1/8+......,则时间限制在实际需要时间以内,即此人与目的地距离可以为任意小,却到不了。实际上是这个悖论本身限定了时间,当然到达不了。
《庄子・天下篇》中也提到:“一尺之棰,日取其半,万世不竭。”
芝诺与庄子悖论的区别为芝诺悖论一定时间内行走的距离不变(即速度不变),而庄子时间不变,这段时间里的工作却越来越少(速度越来越慢),可以看出芝诺限制了时间,而庄子的理论可以使时间为无穷大。

芝诺悖论_芝诺悖论 -三个例子

两分法悖论 芝诺悖论 芝诺悖论-概述,芝诺悖论-两分法

追乌龟


追乌龟阿喀琉斯是古希腊神话中善跑的英雄。在他和乌龟的竞赛中,他速度为乌龟十倍,乌龟在前面100米跑,他在后面追,但他不可能追上乌龟。因为在竞赛中,追者首先必须到达被追者的出发点,当阿喀琉斯追到100米时,乌龟已经又向前爬了10米,于是,一个新的起点产生了;阿喀琉斯必须继续追,而当他追到乌龟爬的这10米时,乌龟又已经向前爬了1米,阿喀琉斯只能再追向那个1米。就这样,乌龟会制造出无穷个起点,它总能在起点与自己之间制造出一个距离,不管这个距离有多小,但只要乌龟不停地奋力向前爬,阿喀琉斯就永远也追不上乌龟!
“乌龟”动得最慢的物体不会被动得最快的物体追上。由于追赶者首先应该达到被追者出发之点,此时被追者已经往前走了一段距离。因此被追者总是在追赶者前面。”
如柏拉图描述,芝诺说这样的悖论,是兴之所至的小玩笑。首先,巴门尼德编出这个悖论,用来嘲笑"数学派"所代表的毕达哥拉斯的"1-0.999...>0"思想。然后,他又用这个悖论,嘲笑他的学生芝诺的"1-0.999...=0,但1-0.999...>0"思想。最后,芝诺用这个悖论,反过来嘲笑巴门尼德的"1-0.999...=0,或1-0.999...>0"思想。
有人解释道:若慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。
芝诺当然知道阿喀琉斯能够捉住海龟,跑步者肯定也能跑到终点。
类似阿基里斯追上海龟之类的追赶问题,我们可以用无穷数列的求和,或者简单建立起一个方程组就能算出所需要的时间,那么既然我们都算出了追赶所花的时间,我们还有什么理由说阿基里斯永远也追不上乌龟呢?然而问题出在这里:我们在这里有一个假定,那就是假定阿基里斯最终是追上了乌龟,才求出的那个时间。但是芝诺的悖论的实质在于要求我们证明为何能追上。上面说到无穷个步骤是难以完成。
以上初等数学的解决办法,是从结果推往过程的。悖论本身的逻辑并没有错,它之所以与实际相差甚远,在于这个芝诺与我们采取了不同的时间系统。人们习惯于将运动看做时间的连续函数,而芝诺的解释则采取了离散的时间系统。即无论将时间间隔取得再小,整个时间轴仍是由无限的时间点组成的。换句话说,连续时间是离散时间将时间间隔取为无穷小的极限。
其实这归根到底是一个时间的问题。譬如说,阿基里斯速度是10m/s,乌龟速度是1m/s,乌龟在前面100m。实际情况是阿基里斯必然会在100/9秒之后追上乌龟。按照悖论的逻辑,这100/9秒可以无限细分,给我们一种好像永远也过不完的印象。但其实根本不是如此。这就类似于有1秒时间,我们先要过一半即1/2秒,再过一半即1/4秒,再过一半即1/8秒,这样下去我们永远都过不完这1秒,因为无论时间再短也可无限细分。但其实我们真的就永远也过不完这1秒了吗?显然不是。尽管看上去我们要过1/2、1/4、1/8秒等等,好像永远无穷无尽。但其实时间的流动是匀速的,1/2、1/4、1/8秒,时间越来越短,看上去无穷无尽,其实加起来只是个常数而已,也就是1秒。所以说,芝诺的悖论是不存在的。

飞矢不动


飞矢不动设想一支飞行的箭。在每一时刻,它位于空间中的一个特定位置。由于时刻无持续时间,箭在每个时刻都没有时间而只能是静止的。鉴于整个运动期间只包含时刻,而每个时刻又只有静止的箭,所以芝诺断定,飞行的箭总是静止的,它不可能在运动。
上述结论也适用于时刻有持续时间的情况。对于这种情况,时刻将是时间的最小单元。假设箭在这样一个时刻中运动了,那么它将在这个时刻的开始和结束位于空间的不同位置。这说明时刻具有一个起点和一个终点,从而至少包含两部分。但这明显与时刻是时间是的最小单元这一前提相矛盾。因此,即使时刻有持续时间,飞行的箭也不可能在运动。总之,飞矢不动。
箭悖论的标准解决方案如下:箭在每个时刻都不动这一事实不能说明它是静止的。运动与时刻里发生什么无关,而是与时刻间发生什么有关。如果一个物体在相邻时刻在相同的位置,那么我们说它是静止的,反之它就是运动的。

游行队伍

首先假设在操场上,在一瞬间(一个最小时间单位)里,相对于观众席A,列队B、C将分别各向右和左移动一个距离单位。
◆◆◆◆观众席A
▲▲▲▲队列B
  

爱华网本文地址 » http://www.aihuau.com/a/8104090103/174566.html

更多阅读

忘了你,加两分 忘了你忘了我吉他谱

“作家杯”第十六届全国新概念作文大赛参赛作品选登——《忘了你,加两分》——作者:姜雨晨1.从小到大,陶小懒都一度怀疑自己是不是过于平庸了一点。景老师说每个同学都得有一个计分的本子,比如说“没带作业,扣一分”“上课开小差,扣

UNO优诺纸牌游戏玩法详解 优诺纸牌

UNO优诺纸牌游戏玩法详解——简介UNO(西班牙语和意大利语都解作“一”)是一种纸牌游戏,由Merle Robbins 于1971年发明,现时由游戏公司 Mattel生产。当玩者手上只余下一张牌时,必须喊出"uno",游戏因而得名。UNO纸牌引进国内时,取名“优诺”

万行上师《心法十论》 万行教师人才网

心法一:论明师大彻大悟的人就是一位彻底地平凡的人,正是因为平凡,才使其成为一位神秘莫测的人。平凡的人抛弃了所有不平凡的抱负,完全满足于现状,享受现有的生活,他没有什么想达成,做任何事都没有动机,生活中的点点滴滴对于彻底平凡的人来讲

王正龙先生的灸法直论四 王正龙

(四)最后,就传统中医理论中的几个问题进行论述,以供医者参考和百姓日用:一、论晕针:清·李守先《绘图针灸易学》中说:今人习针少而用药者多,恐晕针也。独不知晕针者无不获救。用药不当,难以保保全,针与药较,针易药难也。晕针者,神气虚也。

两把尺子在哲学理论中的准确位置 马克思主义哲学理论

哲学逻辑研究的对象不是观点道理,而是思维方法、真理格式、逻辑规则。在科学的哲学理论中,哲学的方法不是只有单一的认识方法——唯物辩证法,而是包含分析方法、表述方法、论证方法、结构方法和模型方法在内的各种形式。逻辑图为:┌认识

声明:《两分法悖论 芝诺悖论 芝诺悖论-概述,芝诺悖论-两分法》为网友萌比男人分享!如侵犯到您的合法权益请联系我们删除