布朗运动数学定义 布朗运动 布朗运动-相关定义,布朗运动-特点

布朗运动是将看起来连成一片的液体,在高倍显微镜下看其实是由许许多多分子组成的。液体分子不停地做无规则的运动,不断地随机撞击悬浮微粒。当悬浮的微粒足够小的时候,由于受到的来自各个方向的液体分子的撞击作用是不平衡的。在某一瞬间,微粒在另一个方向受到的撞击作用超强的时候,致使微粒又向其它方向运动,这样,就引起了微粒的无规则的运动就是布朗运动。

布朗运动_布朗运动 -相关定义


布朗运动

悬浮微粒永不停息地做无规则运动的现象叫做布朗运动。

例如,在显微镜下观察悬浮在水中的藤黄粉、花粉微粒,或在无风情形观察空气中的烟粒、尘埃时都会看到这种运动。温度越高,运动越激烈。它是1827年植物学家R.布朗最先用显微镜观察悬浮在水中花粉的运动而发现的。作布朗运动的粒子非常微小,直径约1~10微米, 在周围液体或气体分子的碰撞下,产生一种涨落不定的净作用力,导致微粒的布朗运动。如果布朗粒子相互碰撞的机会很少,可以看成是巨大分子组成的理想气体,则在重力场中达到热平衡后,其数密度按高度的分布应遵循玻耳兹曼分布。J.B.佩兰的实验证实了这一点,并由此相当精确地测定了阿伏伽德罗常量及一系列与微粒有关的数据。1905年A.爱因斯坦根据扩散方程建立了布朗运动的统计理论。布朗运动的发现、实验研究和理论分析间接地证实了分子的无规则热运动,对于气体动理论的建立以及确认物质结构的原子性具有重要意义,并且推动统计物理学特别是涨落理论的发展。由于布朗运动代表一种随机涨落现象,它的理论对于仪表测量精度限制的研究以及高倍放大电讯电路中背景噪声的研究等有广泛应用。

这是1826年英国植物学家布朗(1773-1858)用显微镜观察悬浮在水中的花粉时发现的。后来把悬浮微粒的这种运动叫做布朗运动。不只是花粉和小炭粒,对于液体中各种不同的悬浮微粒,都可以观察到布朗运动。

布朗运动_布朗运动 -特点

无规则

每个液体分子对小颗粒撞击时给颗粒一定的瞬时冲力,由于分子运动的无规则性,每一瞬间,每个分子撞击时对小颗粒的冲力大小、方向都不相同,合力大小、方向随时改变,因而布朗运动是无规则的。

永不停歇

因为液体分子的运动是永不停息的,所以液体分子对固体微粒的撞击也是永不停息的。

颗粒越小,布朗运动越明显

颗粒越小,颗粒的表面积越小,同一瞬间,撞击颗粒的液体分子数越少,据统计规律,少量分子同时作用于小颗粒时,它们的合力是不可能平衡的。而且,同一瞬间撞击的分子数越少,其合力越不平衡,又颗粒越小,其质量越小,因而颗粒的加速度越大,运动状态越容易改变,故颗粒越小,布朗运动越明显。

温度越高,布朗运动越明显

温度越高,液体分子的运动越剧烈,分子撞击颗粒时对颗粒的撞击力越大,因而同一瞬间来自各个不同方向的液体分子对颗粒撞击力越大,小颗粒的运动状态改变越快,故温度越高,布朗运动越明显。

肉眼看不见

做布朗运动的固体颗粒很小,肉眼是看不见的,必须在显微镜才能看到。

布朗运动间接反映并证明了分子热运动。

布朗运动_布朗运动 -历史研究

布朗的发现是一个新奇的现象,它的原因是什么?人们是迷惑不解的。在布朗之后,这一问题一再被提出,为此有许多学者进行过长期的研究。一些早期的研究者简单地把它归结为热或电等外界因素引起的。最早隐约指向合理解释的是维纳(1826――1896),1863年他提出布朗运动起源于分子的振动,他还公布了首次对微粒速度与粒度关系的观察结果。不过他的分子模型还不是现代的模型,他看到的实际上是微粒的位移,并不是振动。

流动根源

在维纳之后,S・埃克斯纳也测定了微粒的移动速度。他提出布朗运动是由于微观范围的流动造成的,他没有说明这种流动的根源,但他看到在加热和光照使液体粘度降低时,微粒的运动加剧了。就这样,维纳和S・埃克斯纳都把布朗运动归结为物系自身的性质。这一时期还有康托尼,他试图在热力理论的基础上解释布朗运动,认为微粒可以看成是巨大分子,它们与液体介质处于热平衡,它们与液体的相对运动起源于渗透作用和它们与周围液体之间的相互作用。

撞击结果

到了70――80年代,一些学者明确地把布朗运动归结为液体分子撞击微粒的结果,这些学者有卡蓬内尔、德尔索和梯瑞昂,还有耐格里。植物学家耐格里(1879)从真菌、细菌等通过空气传播的现象,认为这些微粒即使在静止的空气中也可以不沉。联系到物理学中气体分子以很高速度向各方向运动的结论,他推测在阳光下看到的飞舞的尘埃是气体分子从各方向撞击的结果。他说:“这些微小尘埃就象弹性球一样被掷来掷去,结果如同分子本身一样能保持长久的悬浮。”不过耐格里又放弃了这一可能达到正确解释的途径,他计算了单个气体分子和尘埃微粒发生弹性碰撞时微粒的速度,结果要比实际观察到的小许多数量级,于是他认为由于气体分子运动的无规则性,它们共同作用的结果不能使微粒达到观察速度值,而在液体中则由于介质和微粒的摩擦阻力和分子间的粘附力,分子运动的设想不能成为合适的解释。

解决难题


布朗运动

1874――1880年间,卡蓬内尔、德耳索和梯瑞昂的工作解决了耐格里遇到的难题。这里的关键是他们认为由于分子运动的无规则性和分子速度有一分布,在液体或气体中的微观尺度上存在密度和压力的涨落。这种涨落在宏观尺度上抵消掉了。但是如果压方面足够微小,这种不均匀性就不能抵消,液体中的相应的扰动就能表现出来。因此悬浮在液体中的微粒只要足够小,就会不停地振荡下去。卡蓬内尔明确地指出唯一影响此效应的因素是微粒的大小,不过他把这种运动主要看成振荡,而德耳索根据克劳修斯把分子运动归结为平动和转动的观点,认为微粒的运动是无规则位移,这是德耳索的主要贡献。

实验观察

此后,古伊在1888――1895年期间对布朗运动进行过大量的实验观察。古伊对分子行为的描述并不比卡蓬内尔等人高明,他也没有弄清涨落的见解。不过他的特别之处是他强调的不是对布朗运动的物理解释,而是把布朗运动作为探究分子运动性质的一个工具。他说:“布朗运动表明,并不是分子的运动,而是从分子运动导出的一些结果能向我们提供直接的和可见的证据,说明对热本质假设的正确性。按照这样的观点,这一现象的研究承担了对分子物理学的重要作用。”古伊的文献产生过重要的影响,所以后来贝兰把布朗运动正确解释的来源归功于古伊。

研究工作

到了1900年,F・埃克斯纳完成了布朗运动前期研究的最后工作。他用了许多悬浊液进行了和他的父亲S・埃克斯纳30年前作过的同类研究。他测定了微粒在1min内的位移,与前人一样,证实了微粒的速度随粒度增大而降低,随温度升高而增加。他清楚地认识到微粒作为巨大分子加入了液体分子的热运动,指出从这一观点出发“就可以得出微粒的动能和温度之间的关系。”他说:“这种可见的运动及其测定值对我们清楚了解液体内部的运动会有进一步的价值”。

基本情况

以上是1900年前对布朗运动研究的基本情况。自然,这些研究与分子运动论的建立是密切相关的。由麦克斯威和玻尔兹曼在60――70年代建立的气体分子运动论在概念上的一个重大发展是抛弃了对单个分子进行详细跟踪的方法,而代之以对大量分子的统计处理,这为弄清布朗运动的根源打下了基础。与布朗运动的研究有密切关系的还有在60年代由格雷哈姆建立的胶体科学。所谓胶体是由粒度介于宏观粒子和微观分子之间的微粒形成的分散体系,布朗运动正是胶体粒子在液体介质中表现的运动。

对于布朗运动的研究,1900年是个重要的分界线。至此,布朗运动的适当的物理模型已经显明,剩下的问题是需要作出定量的理论描述了。

布朗运动_布朗运动 -爱因斯坦

1905年,爱因斯坦依据分子运动论的原理提出了布朗运动的理论。就在差不多同时,斯莫卢霍夫斯基也作出了同样的成果。他们的理论圆满地回答了布朗运动的本质问题。

布朗运动数学定义 布朗运动 布朗运动-相关定义,布朗运动-特点

应该指出,爱因斯坦从事这一工作的历史背景是那时科学界关于分子真实性的争论。这种争论由来已久,从原子分子理论产生以来就一直存在。本世纪初,以物理学家和哲学家马赫和化学家奥斯特瓦尔德为代表的一些人再次提出对原子分子理论的非难,他们从实证论或唯能论的观点出发,怀疑原子和分子的真实性,使得这一争论成为科学前沿中的一个中心问题。要回答这一问题,除开哲学上的分歧之外,就科学本身来说,就需要提出更有力的证据,证明原子、分子的真实存在。比如以往测定的相对原子质量和相对分子质量只是质量的相对比较值,如果它们是真实存在的,就能够而且也必须测得相对原子质量和相对分子质量的绝对值,这类问题需要人们回答。

由于上述情况,象爱因斯坦在论文中指出的那样,他的目的是“要找到能证实确实存在有一定大小的原子的最有说服力的事实。”他说:“按照热的分子运动论,由于热的分子运动,大小可以用显微镜看见的物体悬浮在液体中,必定会发生其大小可以用显微镜容易观测到的运动。可能这里所讨论的运动就是所谓‘布朗分子运动’”。他认为只要能实际观测到这种运动和预期的规律性,“精确测定原子的实际大小就成为可能了”。“反之,要是关于这种运动的预言证明是不正确的,那么就提供了一个有份量的证据来反对热分子运动观”。

原理推导

爱因斯坦的成果大体上可分两方面。一是根据分子热运动原理推导:在t时间里,微粒在某一方向上位移的统计平均值,即方均根值,D是微粒的扩散系数。这一公式是看来毫无规则的布朗运动服从分子热运动规律的必然结果。

爱因斯坦成果的第二个方面是对于球形微粒,推导出了可以求算阿式中的η是介质粘度,a是微粒半径,R是气体常数,NA为阿伏加德罗常数。按此公式,只要实际测得准确的扩散系数D或布朗运动均方位移就可得到原子和分子的绝对质量。爱因斯坦曾用前人测定的糖在水中的扩散系数,估算的NA值为3.3×10^23,一年后(1906),又修改为6.56×10^23。

真实性

爱因斯坦的理论成果为证实分子的真实性找到了一种方法,同时也圆满地阐明了布朗运动的根源及其规律性。下面的工作就是要用充足的实验来检验这一理论的可靠性。爱因斯坦说:“我不想在这里把可供我使用的那些稀少的实验资料去同这理论的结果进行比较,而把它让给实验方面掌握这一问题的那些人去做”。“但愿有一位研究者能够立即成功地解决这里所提出的、对热理论关系重大的这个问题!”爱因斯坦提出的这一任务不久之后就由贝兰(1870――1942)和斯维德伯格分别出色的完成了。这里还应该提到本世纪初在研究布朗运动方面一个重大的实验进展是1902年齐格蒙第(1865――1929)发明了超显微镜,用它可直接看到和测定胶体粒子的布朗运动,这也就是证实了胶体粒子的真实性,为此,齐格蒙第曾获1925年诺贝尔化学奖。斯维德伯格测定布朗运动就是用超显微镜进行的。

贝兰实验

1908到1913年期间,贝兰进行了验证爱因斯坦理论和测定阿伏加德罗常数的实验研究。他的工作包括好几方面。在初期,他的想法是,既然在液体中进行布朗运动的微粒可以看成是进行热运动的巨大分子,它们就应该遵循分子运动的规律,因此只要找到微粒的一种可用实验观测的性质,这种性质与气体定律在逻辑上是等效的,就可以用来测定阿伏加德罗常数。1908年,他想到液体中的悬浮微粒相当于“可见分子的微型大气”,所以微粒浓度(单位体积中的数目)的高度分布公式应与气压方程有相同的形式,只是对粒子受到的浮力应加以校正。这一公式是:ln(n/n0)=-mgh(1-ρ/ρ0)/kt。式中k是波尔兹曼常数,自k和NA的关系,公式也可写成ln(n/n0)=-NA mgh(1-ρ/ρ0)/RT。根据此公式,从实验测定的粒子浓度的高度分布数据就可以计算k和NA。

为进行这种实验,先要制得合用的微粒。制备方法是先向树脂的酒精溶液中加入大量水,则树脂析出成各种尺寸的小球,然后用沉降分离的方法多次分级,就可以得到大小均匀的级份(例如直径约3/4μm的藤黄球)。用一些精细的方法测定小球的直径和密度。下一步是测定悬浮液中小球的高度分布,是将悬浮液装在透明和密闭的盘中,用显微镜观察,待沉降达到平衡后,测定不同高度上的粒子浓度。可以用快速照相,然后计数。测得高度分布数据,即可计算NA。贝兰及其同事改变各种实验条件:材料(藤黄、乳香),粒子质量(从1到50),密度(1.20到1.06),介质(水,浓糖水,甘油)和温度(-90°到60°),得到的NA值是6.8×10^23。

直接证明

贝兰的另一种实验是测量布朗运动,可以说这是对分子热运动理论的更直接证明。根据前述的爱因斯坦对球形粒子导出的公式,只要实验液,在选定的一段时间内用显微镜观察粒子的水平投影,测得许多位移数值,再进行统计平均。贝兰改变各种实验条件,得到的NA值是(5.5-7.2)×10。贝兰还用过一些其它方法,用各种方法得到的NA值是:

6.5×10 用类似气体悬浮液分布法,

6.2×10 用类似液体悬浮液分布法,

6.0×10 测定浓悬浮液中的骚动,

6.5×10测定平动布朗运动,

6.5×10 测定转动布朗运动。

这些结果相当一致,都接近现代公认的数值6.022×10^23。考虑到方法涉及许多物理假设和实验技术上的困难,可以说这是相当了不起的。以后的许多研究者根据其它原理测定的NA值都肯定了贝兰结果的正确性。与贝兰差不多同时,斯维德伯格(1907)用超显微镜观测金溶胶的布朗运动,在测定阿伏加德罗常数和验证爱因斯坦理论上也作出了出色的工作。可以说他们是最先称得原子质量的人,所以在1926年,贝兰和斯维德伯格分别获得了诺贝尔物理学奖和化学奖。

布朗运动_布朗运动 -力学平衡

按经典热力学的观点,布朗运动严格来说属于机械运动,因此它表现出的是一种机械能。这种机械能是自发由内能转化而来,而与同时,它又在向内能转化而去,当这两种转化的速率相同时,客观上就达到了一种动态平衡,表现为颗粒做布朗运动。此时两种能自发地不停地相互转化,而不引起其它变化。

有人据此对热力学第二定律提出质疑。实际上,布朗运动是一种特殊的机械运动,做布朗运动的颗粒正好处于宏观与微观的分界点上,所以布朗运动中机械能同时具有一般意义上的宏观机械能与微观分子动能的双重特性,它的能量集中程度介于两者之间,无序性也介于两者之间。

热力学第二定律本身只适用于宏观物体,而布朗运动的问题,实际上反映了经典物理学“宏观”与“微观”概念的模糊性,也反映了经典物理学的局限。而这种特殊的运动能否像人们希望的那样把人类从灭顶于熵的悲剧中拯救出来,只能从量子物理学中寻求答案。

布朗运动_布朗运动 -相关课题


布朗运动相关图片

无规则行走(random walk)

定义:无规则行走就是随机游走。其概念接近于布朗运动,是布朗运动的理想数学状态。

核心概念:任何无规则行走者所带的守恒量都各自对应着一个扩散运输定律。

无规则行走只是布朗运动的理想状态

无规则行走只是布朗运动的理想状态二者概念不等同,实际观测,在纳米尺度下,不规则物体布朗运动不满足高斯分布。

在很多系统都存在不同类型的无规则行走,他们都具有相似结构。单个的随机事件我们不可预测,但随机大量的群体行为,却是精确可知的,这就是概率世界的魅力,在偶然中隐含着必然。随机性造成了低尺度下的差异性,但在高尺度下又表现为共同的特征的相似性。按照概率的观点“宇宙即是所有随机事件概率的总和”。

椭球体布朗运动相关研究


椭球体在水中的布朗运动

虽然无规则行走导致的扩散满足以上的方程并有普适性,但假如这样的的“无规则行走”某个方向,并不是完全随机呢?以前面提到的投硬币为例子,一个1 分,一个5 分,其中1 分硬币破损使得正反面概率不相等,并且随机若干步后,将1 分和5 分硬币所代表的方向对调;那么二维的无规则行走路径必然发生改变。当年爱因斯坦的论文是探讨球形颗粒的布朗运动,我们知道球形颗粒的旋转并不影响他的平移,旋转的非球形例子却会影响它的平移。实际中,大量布朗运动的颗粒都是非球形的,所以更多的模型不得不考虑随机转动问题。其实即使对球形颗粒在黏性流体中,也要考虑随机转动产生的转动摩擦系数对扩散的影响。

宾夕法尼亚大学的网站报道,研究人员用数字视屏显微镜观察水中悬浮椭球体的随机旋转和移动。球形颗粒扩散分布将随时间逐渐变宽,为高斯型浓度分布;而椭球颗粒不满足高斯分布。随着布朗运动的深入研究,越来越多的实验表明布朗运动颗粒的行为与爱因斯坦一个世纪前的假设不同。2005 年10 月的物理评论快报,提到现在实验室可以跟踪布朗运动颗粒的测量精度达到微秒和纳米的尺度。科学家们也发现活细胞的许多基本过程由布朗运动所驱动。试验结果描述布朗运动的方程式偏离标准理论的,实际的布朗运动要比理想化的无规则行走要复杂。

右图是 标准的无规则行走,色彩标记显示出椭球的耦合方向和位移,并清楚的表明椭球的扩散其长轴比其短轴扩散更快。(此图来源于宾夕法尼亚大学网站关于布朗运动的研究)

还原论的缺憾

布朗运动是分形的典型例子,理想状态下的布朗运动是高斯正态分布,当然更多的布朗运动研究细节我们不做探讨。任何事物都不是孤立的,都是相互作用、相互联系的。用还原论观点将系统一个个隔离是对事物的理想化,是在一定程度上精确定量描述系统,当然这也是认识事物必经的步骤,但是有缺陷的。

哥德尔不完备定理,以及认识主体对客体的反映永远存在这不完备性。我观赞同哥本哈根学派的主张“自然科学不是自然界本身,而是人和自然界间关系的一部分,因而依赖人”。无论用还原论还是整体论都是用抽象去阐明物质的特性,这些抽象在任何时候仅仅是近似地、有条件的把握了物质的本质,不是世界的全部。布朗运动研究的历史,具有典型性,有点像整个科学研究史的缩影。人对事物的认识总是渐进的,不断深入的,随着认识深入会发现各种模型都是理想化的条件。这种认识永远无法走向事物的绝对认识,因为孤立的事物是不存在的,所有的系统都是宇宙整体的一部分。

布朗运动_布朗运动 -数学中的布朗运动

{B(t)}布朗运动(brownian motion)也称为维纳过程,是一个随机过程,如果满足以下性质:

1. 独立的增量(independence of increments)

对于任意的t>s, B(t)-B(s)独立于之前的过程B(u):0

2. 正态的增量(normal increments)

B(t)-B(s)满足均值为0方差为t-s的正态分布。即,B(t)-B(s)~ N(0,t-s)。

3. 连续的路径(continuity of paths)

B(t), t>=0是关于t的连续函数。固定一条路径, B(t)->B(s) 满足依概率收敛。


布朗运动

布朗运动_布朗运动 -金融数学

将布朗运动与股票价格行为联系在一起,进而建立起维纳过程的数学模型是本世纪的一项具有重要意义的金融创新,在现代金融数学中占有重要地位。迄今,普遍的观点仍认为,股票市场是随机波动的,随机波动是股票市场最根本的特性,是股票市场的常态。


一维brownian motion

布朗运动假设是现代资本市场理论的核心假设。现代资本市场理论认为证券期货价格具有随机性特征。这里的所谓随机性,是指数据的无记忆性,即过去数据不构成对未来数据的预测基础。同时不会出现惊人相似的反复。随机现象的数学定义是:在个别试验中其结果呈现出不确定性;在大量重复试验中其结果又具有统计规律性的现象。描述股价行为模型之一的布朗运动之维纳过程是马尔科夫随机过程的一种特殊形式;而马尔科

夫过程是一种特殊类型的随机过程。随机过程是建立在概率空间上的概率模型,被认为是概率论的动力学,即它的研究对象是随时间演变的随机现象。所以随机行为是一种具有统计规律性的行为。股价行为模型通常用著名的维纳过程来表达。假定股票价格遵循一般化的维纳过程是很具诱惑力的,也就是说,它具有不变的期望漂移率和方差率。维纳过程说明只有变量的当前值与未来的预测有关,变量过去的历史和变量从过去到现在的演变方式则与未来的预测不相关。股价的马尔科夫性质与弱型市场有效性(the weak form of market efficiency)相一致,也就是说,一种股票的现价已经包含了所有信息,当然包括了所有过去的价格记录。但是当人们开始采用分形理论研究金融市场时,发现它的运行并不遵循布朗运动,而是服从更为一般的几何布朗运动(geometric browmrian motion)。

布朗运动_布朗运动 -常见误解


花粉具备足够大小,几乎无法观测到布朗运动

值得注意的是,布朗运动指的是花粉迸出的微粒的随机运动,而不是分子的随机运动。但是通过布朗运动的现象可以间接证明分子的无规则运动。

一般而言,花粉之直径分布于30~50μm、最小亦有10μm之谱,相较之下,水分子直径约0.3nm(非球形,故依部位而有些许差异。),概略为花粉之万分之一,难以令花粉产生不规则振动。因此,花粉事实上几乎不受布朗运动之影响。在罗伯特・布朗的手稿中,“tiny particles from the pollen grains of flowers”意味着“自花粉粒中迸出之微粒子”,而非指花粉本身。然而在翻译为诸国语言时,时常受到误解,以为是“水中的花粉受到水分子撞击而呈现不规则运动”。积非成是之下,在大众一般观念中,此误会已然根深蒂固。

花粉具备足够大小,几乎无法观测到布朗运动。

在日本,以鹤田宪次‘物理学丛话’为滥觞,岩波书店‘岩波理科辞典’、花轮重雄‘物理学

  

爱华网本文地址 » http://www.aihuau.com/a/8104090103/175180.html

更多阅读

七年级上册数学试卷卷面分析 正数的定义

一、试卷方面:本次试卷题型:结构合理,题量适中,分为填空题,选择题,解答题三种题型,共计27道小题,满分100分。命题严格遵循数学课程标准的要求坚持以课改思想为指导,考查学生数学知识与技能理解,重视对数学思想方法的理解与应用、数学与现实联

心智模式7 :布朗运动——是什么让你无法走远?

布朗运动中的心智模式在阅读本篇文章之前,请先回想一下自己最近几年做过了那些重要的事情。好。想清楚之后,请看下面这个图:你觉得这个轨迹像不像你的人生轨迹?这个图,描述的是花粉的微小粒子在水中的“布朗运动”。1827年,苏格兰植物学家

为什么1是奇数0是偶数 0算奇数还是偶数

关于1与0是奇数还是偶数的问题,数学界曾经有过一番讨论。数学定义为能被2整除的都是偶数,零除以2等于零,结果是整数,所以结论零是偶数。但0除以任何数据都得0,数学研究很麻烦。其实,很简单,路人告诉你个原因,还请朋友们站在严肃的学问立场

几种数值积分方法的基础 数值积分

数值积分方法在数值分析中,数值积分是计算定积分数值的方法和理论。在数学分析中,给定函数的定积分的计算不总是可行的。许多定积分不能用已知的积分公式得到精确值。数值积分是利用黎曼积分和积分中值等数学定义和定理,用数值逼近的

数学课堂的引入 数学课堂教学中的问题引入

     数学相对其它学科,对学生而言,应该算是比较无味的一门学科,它不象其他学科具有更多的吸引力。加上数学定义的抽象性,逻辑推理的严谨性,使得学生望而生畏。缺乏学习兴趣,也就是缺乏学习的动力,当然也就没有学习主动性。没有了学习

声明:《布朗运动数学定义 布朗运动 布朗运动-相关定义,布朗运动-特点》为网友京华倦客分享!如侵犯到您的合法权益请联系我们删除