梅涅劳斯(Menelaus)定理(简称梅氏定理)最早出现在由古希腊数学家梅涅劳斯的着作《球面学》(Sphaerica)。 任何一条直线截三角形的各边,都使得三条不相邻线段之积等于另外三条线段之积,这一定理同样可以轻而易举地用初等几何或通过应用简单的三角关系来证明. 梅涅劳斯把这一定理扩展到了球面三角形……”
梅涅劳斯定理_梅涅劳斯定理 -定理内容
首先给出完整的定理内容:
梅涅劳斯定理
当直线交
三边所在直线
于点
时,
梅涅劳斯定理
梅涅劳斯定理_梅涅劳斯定理 -证明
证明一:
过点A作AG∥BC交DF的延长线于G
AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG
三式相乘得:
AF/FB×BD/DC×CE/EA=AG/BD×BD/DC×DC/AG=1
证明二:过A做直线AM∥FD交BC延长线于M点,则
CE/EA=CD/DM,AF/FB=MD/DB,故
(DB/DC)X(CE/EA)×(AF/FB)=(DB/DC)X(CD/DM)X(MD/DB)=1
另证:
连结CF、AD,根据“两个三角形等高时面积之比等于底边之比”的性质有。
另证。
AF:FB =S△ADF:S△BDF…………(1),BD:DC=S△BDF:S△CDF…………(2),CE:EA=S△CDE:S△ADE=S△FEC:S△FEA=(S△CDE+S△FEC):(S△ADE+S△FEA)=S△CDF:S△ADF………… (3)(1)×(2)×(3)得(AF:FB)×( BD:DC)×(CE:EA)=(S△ADF:S△BDF)×(S△BDF:S△CDF)×(S△CDF:S△ADF)=1
梅涅劳斯定理_梅涅劳斯定理 -数学意义
使用梅涅劳斯定理可以进行直线形中线段长度比例的计算,其逆定理还可以用来解决三点共线、三线共点等问题的判定方法,是平面几何学以及射影几何学中的一项基本定理,具有重要的作用。梅涅劳斯定理的对偶定理是塞瓦定理。
它的逆定理也成立:若有三点F、D、E分别在的边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线。利用这个逆定理,可以判断三点共线。