方差性质公式 方差公式 方差公式-计算方法,方差公式-性质

方差公式是数学统计学中的重要公式,应用于生活中各种事情,方差越小,代表这组数据越稳定,方差越大,代表这组数据越不稳定。若x1,x2,x3......xn的平均数为m 则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2] 方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度。方差公式中,平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。单个偏离是消除符号影响方差即偏离平方的均值,记为D(X):直接计算公式分离散型和连续型。

方差公式_方差公式 -计算方法


方差公式

若x,x,x......x的平均数为m则方差

例1 两人的5次测验成绩如下:

X: 50,100,100,60,50 E(X )=72;

Y: 73, 70, 75,72,70 E(Y )=72。

平均成绩相同,但X 不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。

单个偏离是消除符号影响方差即偏离平方的均值,记为D(X ):

直接计算公式分离散型和连续型,具体为:这里 是一个数。推导另一种计算公式

得到:“方差等于平方的均值减去均值的平方”。

其中,分别为离散型和连续型的计算公式。 称为标准差或均方差,方差描述波动

方差公式_方差公式 -性质

1.设C为常数,则D(C) = 0(常数无波动);

2. D(CX )=C2 D(X ) (常数平方提取);

证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)

3.若X 、Y 相互独立,则,证:记

前面两项恰为 D(X )和D(Y ),第三项展开后为

当X、Y 相互独立时,故第三项为零。特别地独立前提的逐项求和,可推广到有限项。

方差公式:


方差公式

平均数:

(n表示这组数据个数,x、x、x……x表示这组数据具体数值)


方差公式

方差公式:

方差公式_方差公式 -常用分布

1.两点分布

2.二项分布

X ~ B ( n, p )

方差性质公式 方差公式 方差公式-计算方法,方差公式-性质

引入随机变量 Xi (第i次试验中A 出现的次数,服从两点分布)

3.泊松分布(推导略)

4.均匀分布

另一计算过程为

5.指数分布(推导略)

6.正态分布(推导略)


方差公式

7.t分布 :其中X~T(n),E(X)=0;


方差公式

8.F分布:其中X~F(m,n),

;

正态分布的后一参数反映它与均值 的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。

例2 求上节例2的方差。

解 根据上节例2给出的分布律,计算得到

工人乙废品数少,波动也小,稳定性好。

方差公式_方差公式 -公式


方差公式

设一组数据x,x,x……x中,各组数据与它们的平均数x(拔)的差的平方分别是(x-x),(x-x)……(xn-x拔),那么我们用他们的平均数来衡量这组数据的波动大小,并把它叫做这组数据

的方差。

  

爱华网本文地址 » http://www.aihuau.com/a/8104120103/184715.html

更多阅读

spss教程:单因素方差分析

spss教程:单因素方差分析——简介用来测试某一个控制变量的不同水平是否给观察变量造成显著差异和变动。方差分析前提:不同水平下,各总体均值服从方差相同的正态分布。所以方差分析就是研究不同水平下各个总体的均值是否有显著的差异

方差和标准差的年化问题 方差 标准差 协方差

现有一个投资组合,假定该组合的日收益率序列用250(一年按250个交易日)个变量表示:,并且假定这250组观测值独立同分布,那么可以计算该投资组合的年化方差和年化标准差。首先,年化方差和年化标准差的统计对象为年化收益率变量,所以我们首先构

方差公式及计算器如何算方差 方差计算器

若x1,x2,x3......xn的平均数为m则方差s^2=1/n[(x1-m)^2+(x2-m)^2+.......+(xn-m)^2]方差即偏离平方的均值,称为标准差或均方差,方差描述波动程度。MODE 2进入SD模式。统计前要先清除上次统计纪录:SHIFTAC=。然后输入

关于样本方差和总体方差 样本方差与总体方差

搜“样本方差n-1”,能够找到很多解释“为什么样本方差的分母是n-1,而总体方差的分母却是n”的结果。我这里贡献一种简单的启发式想法。样本方差的公式:S^2=(X-EX)^2/(n-1)对于个数为N的总体来说,总体方差的公式:S^2=(X-EX)

声明:《方差性质公式 方差公式 方差公式-计算方法,方差公式-性质》为网友你不滚我滚分享!如侵犯到您的合法权益请联系我们删除