换个角度思考 《黑天鹅的世界》第一篇第三章从数学的角度思考历史(1)



历史存在着多种可能,我们不能被历史的一小段过程所迷惑,而要在较大尺度的历史范围内考察一切。

欧洲花花公子的数学

纯粹数学家给人的刻板印象是面无血色、胡须蓬乱、指甲不修,悄无声息地埋首在书籍堆积如山、杂乱无章的书桌上。他挺着啤酒肚、肩膀削瘦,在脏乱的办公室里沉浸于工作中,对周遭混乱的环境视若无睹。他讲起英语来带着浓厚低沉的东欧口音。吃完东西时,碎屑总是残留在胡子上。随着时间的流逝,他日益沉迷在纯粹定理的探索上,触及越来越抽象的概念。美国民众不久前见识到的“大学炸弹手”(unabomber),就是带有这种特征的人。这位数学家留着大胡子,隐遁在简陋的小屋中,努力研究如何杀害推广现代科技的人。没有一位新闻记者能够描述他的论文《复数边界》(Complex Boundaries)的内容,因为找不到可以让我们理解的类似事物,–1的平方根是个复杂、完全抽象和假想的数字,在数学世界以外的地方,找不到能够模拟的东西。

蒙特8226;卡罗(Monte Carlo)这个名字,让人想起皮肤晒得黝黑的欧洲都市花花公子,在地中海的微风中走进赌场。他擅长滑雪和打网球,但也能专心下国际象棋和打桥牌。他开着灰色跑车,穿着笔挺的意大利手工制作的西装,谈起琐碎但真实、新闻记者能以简洁的句子向一般人描述的事情,他的措辞审慎且流畅。在赌场内,他心思敏捷地算牌、熟悉赔率、郑重其事地下注,脑海里可以算出最适当的赌注金额是多少。他可能是007邦德(James Bond)失散多年但更聪明的兄弟。

现在每当我想到蒙特8226;卡罗数学,总是很愉快地把以下两者结合在一起:蒙特8226;卡罗人务实但不浅薄的态度,以及数学家不过度强调抽象概念的直觉。这门数学的分支,确实有很高的实用价值,而且少了数学常见的枯燥无味,从我当上交易员的那一刻起,就迷上了它。在和随机性有关的大部分事物上,它对我的想法影响很大。本书使用的大多数例子,都是用我的蒙特8226;卡罗发生器创造出来的。不过,那是一种思考方式,而不是计算方法。数学主要是用来作为冥思的工具,不是当做计算工具使用。

处理不确定性的工具

|www.aihuau.com|18

上一章所讨论的另类历史的概念,可以大幅延伸,并在技术上做种种改良。这就会谈到我这一行用来处理不确定性的工具。简而言之,蒙特8226;卡罗方法是用以下所述的概念创造人为的历史。

首先来谈样本路径(sample path)。历史的不同发展有个学术名称,叫做替代样本路径,这个名称是从称做随机过程(stochastic processes)的概率数学而来的。路径的概念和结果不同,不是MBA式的情境分析,而是探讨随着时间行进而出现一连串可能的情境。我们不只关心明天晚上鸟儿会栖息在哪里,更关心明天晚上之前,它可能歇脚的所有地方。我们不关心比如说一年后投资人的财富有多少,但关心这段时间内他所有财富的起落。样本一词强调的是,我们只在一大堆可能的结果中看到其中一个。样本路径可能已经确定,也可能是随机的,因而有以下的不同。

一条随机样本路径也称做一个随机序列(random run),是这种虚拟历史事件序列的数学名称,起于某一日期,止于另一日期,不同的地方在于它们受程度不等的不确定性影响。但是虽然名之为随机,却不表示这些事件序列发生的概率相同。有些结果出现的概率高于其他结果。

你的探险家堂弟不久前感染伤寒,从开始染病到痊愈,每个小时测量的体温,便是随机样本路径的例子。我们也可以针对你喜爱的科技股,记录它每天的市场收盘价格,如此持续一年。在某一情境中,它的原始价格可能是100美元,一年后的价格是20美元,但最高价曾经升至220美元。在另一情境中,一年后它的价格是145美元,其间曾经跌到10美元的最低价。你某天晚上在赌场的钱财进出又是另一个例子。你的口袋里本来有1 000美元,每15分钟数一次。在某个样本路径中,半夜时你拥有2 200美元,另一个样本路径中,你只剩下20美元,勉强能叫辆出租车回家。

随机过程是指随着时间的行进,各种事件纷纷出现的动态过程。stochastic一词是random的希腊文,概率论的这一分支,研究对象是连续性随机事件的演变过程。我们可称之为历史的数学。一个过程的关键,在于它含有时间因素。

蒙特8226;卡罗发生器是什么东西?不妨想象你不必找木匠,就能在阁楼里复制一具完美的转盘。我们可以用计算机程序来仿真任何事情,它甚至会比木匠做的转盘要好而且便宜,因为实体转盘可能由于本身的斜度或者阁楼地板倾斜,而使得某个数字特别容易出现,这称做偏差(biases)。

蒙特8226;卡罗发生器是我成年之后见过最像玩具的东西。我们可以靠它产生数千或数百万个随机样本路径,并且观察哪些特性比较凸显。计算机对于这种研究有帮助。冠上蒙特8226;卡罗这个迷人的名字,是想在虚拟的赌场中仿真随机结果。我们可以设定一些条件,使它们类似于现实生活中常见的状况,然后针对可能的事件产生一堆仿真结果。即使不懂数学,我们也可以用蒙特8226;卡罗法,仿真一位18岁的黎巴嫩基督徒连续玩俄罗斯转盘的结果,然后观察有多少次会使他致富,或者平均多长的时间会让他一枪毙命。我们可以把弹夹改成能装500发子弹,以降低死亡的概率,之后再观察结果将如何。

蒙特8226;卡罗仿真法是研制原子弹时在洛斯阿拉莫斯(Los Alamos)实验室发展出来的,20世纪80年代在财务数学领域流行起来,尤其是用于探讨资产价格的随机漫步理论(random walk theories)。我们不得不说,俄罗斯转盘的例子不需要这种装置,但是许多问题,尤其是和真实生活状况类似的问题都需要借助蒙特8226;卡罗仿真法的力量。

蒙特8226;卡罗数学

“真正的”数学家不喜欢蒙特8226;卡罗法,这的确是事实。他们认为蒙特8226;卡罗法剥夺了数学的巧妙技巧和优雅。他们称它为一种“蛮力”,因为我们可以用蒙特8226;卡罗仿真法(以及其他的运算花招)取代一大部分的数学知识。比方说,没有正式学过几何学的人,也能算出神秘如谜般的圆周率(π)。怎么算?你可以在一个正方形内画个圆,然后就像在游乐场那样对着这幅图胡乱举枪射击。详加记载射到图上任何一点的概率,称做均匀分布(uniform distribution)。拿圆圈内的弹孔数除以圆圈内外所有的弹孔数,所得出的比率便是圆周率的倍数,这样近似的精确度可能极大。用计算机来这样计算圆周率问题,显然不是很有效率的做法,因为圆周率可以用解析的方法,也就是数学的形式来计算,但是和一行行的方程式比起来,这种方法能够给使用者对处理问题的本质更直接可见的印象。有些人的大脑和直觉,适合通过这种方式去了解某些事情,我也算是其中一个。对我们人类的大脑来说,计算机或许不是很自然的东西,但数学也一样。

 换个角度思考 《黑天鹅的世界》第一篇第三章从数学的角度思考历史(1)
我不是一个天生的数学家,换句话说,我不是使用数学如使用母语的人,所以讲起数学来带有外国口音。我对数学的性质本身不感兴趣,只对它的应用感兴趣,但是数学家感兴趣的是如何通过定理和证明来拓展数学知识。除非碰到真实的问题,引起一点贪婪之心,否则我没办法专心去解一个方程式。因此我的所知大多来自衍生性金融商品的交易—期权促使我去研究概率数学。许多好赌成性的人,智力本来只属中等,却在贪念驱使下,学会惊人的算牌技巧。  

爱华网本文地址 » http://www.aihuau.com/a/9101032201/233321.html

更多阅读

声明:《换个角度思考 《黑天鹅的世界》第一篇第三章从数学的角度思考历史(1)》为网友哥哥一酷分享!如侵犯到您的合法权益请联系我们删除